Quantum number

Last updated
Single electron orbitals for hydrogen-like atoms with quantum numbers n = 1, 2, 3 (blocks), l (rows) and m (columns). The spin s is not visible, because it has no spatial dependence. Atomic orbitals n123 m-eigenstates.png
Single electron orbitals for hydrogen-like atoms with quantum numbers n = 1, 2, 3 (blocks), (rows) and m (columns). The spin s is not visible, because it has no spatial dependence.

In quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system. To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditional set of quantum numbers includes the principal, azimuthal, magnetic, and spin quantum numbers. To describe other systems, different quantum numbers are required. For subatomic particles, one needs to introduce new quantum numbers, such as the flavour of quarks, which have no classical correspondence.

Contents

Quantum numbers are closely related to eigenvalues of observables. When the corresponding observable commutes with the Hamiltonian of the system, the quantum number is said to be "good", and acts as a constant of motion in the quantum dynamics.

History

Electronic quantum numbers

In the era of the old quantum theory, starting from Max Planck's proposal of quanta in his model of blackbody radiation (1900) and Albert Einstein's adaptation of the concept to explain the photoelectric effect (1905), and until Erwin Schrödinger published his eigenfunction equation in 1926, [1] the concept behind quantum numbers developed based on atomic spectroscopy and theories from classical mechanics with extra ad hoc constraints. [2] :106 Many results from atomic spectroscopy had been summarized in the Rydberg formula involving differences between two series of energies related by integer steps. The model of the atom, first proposed by Niels Bohr in 1913, relied on a single quantum number. Together with Bohr's constraint that radiation absorption is not classical, it was able to explain the Balmer series portion of Rydberg's atomic spectrum formula. [3]

As Bohr notes in his subsequent Nobel lecture, the next step was taken by Arnold Sommerfeld in 1915. [4] Sommerfeld's atomic model added a second quantum number and the concept of quantized phase integrals to justify them. [5] :207 Sommerfeld's model was still essentially two dimensional, modeling the electron as orbiting in a plane; in 1919 he extended his work to three dimensions using 'space quantization' in place of the quantized phase integrals. [6] :152 Karl Schwarzschild and Sommerfeld's student, Paul Epstein, independently showed that adding third quantum number gave a complete account for the Stark effect results.

A consequence of space quantization was that the electron's orbital interaction with an external magnetic field would be quantized. This seemed to be confirmed when the results of the Stern-Gerlach experiment reported quantized results for silver atoms in an inhomogeneous magnetic field. The confirmation would turn out to be premature: more quantum numbers would be needed. [7]

The fourth and fifth quantum numbers of the atomic era arose from attempts to understand the Zeeman effect. Like the Stern-Gerlach experiment, the Zeeman effect reflects the interaction of atoms with a magnetic field; in a weak field the experimental results were called "anomalous", they diverged from any theory at the time. Wolfgang Pauli's solution to this issue was to introduce another quantum number taking only two possible values, . [8] This would ultimately become the quantized values of the projection of spin, an intrinsic angular momentum quantum of the electron. In 1927 Ronald Fraser demonstrated that the quantization in the Stern-Gerlach experiment was due to the magnetic moment associated with the electron spin rather than its orbital angular momentum. [7] Pauli's success in developing the arguments for a spin quantum number without relying on classical models set the stage for the development of quantum numbers for elementary particles in the remainder of the 20th century. [8]

Bohr, with his Aufbau or "building up" principle, and Pauli with his exclusion principle connected the atom's electronic quantum numbers in to a framework for predicting the properties of atoms. [9] When Schrödinger published his wave equation and calculated the energy levels of hydrogen, these two principles carried over to become the basis of atomic physics.

Nuclear quantum numbers

With successful models of the atom, the attention of physics turned to models of the nucleus. Beginning with Heisenberg's initial model of proton-neutron binding in 1932, Eugene Wigner introduced isospin in 1937, the first 'internal' quantum number unrelated to a symmetry in real space-time. [10] :45

Connection to symmetry

As quantum mechanics developed, abstraction increased and models based on symmetry and invariance played increasing roles. Two years before his work on the quantum wave equation, Schrödinger applied the symmetry ideas originated by Emmy Noether and Hermann Weyl to the electromagnetic field. [11] :198 As quantum electrodynamics developed in the 1930s and 1940s, group theory became an important tool. By 1953 Chen Ning Yang had become obsessed with the idea that group theory could be applied to connect the conserved quantum numbers of nuclear collisions to symmetries in a field theory of nucleons. [11] :202 With Robert Mills, Yang developed a non-abelian gauge theory based on the conservation of the nuclear isospin quantum numbers.

General properties

Good quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian, quantities that can be known with precision at the same time as the system's energy. Specifically, observables that commute with the Hamiltonian are simultaneously diagonalizable with it and so the eigenvalues and the energy (eigenvalues of the Hamiltonian) are not limited by an uncertainty relation arising from non-commutativity. Together, a specification of all of the quantum numbers of a quantum system fully characterize a basis state of the system, and can in principle be measured together. Many observables have discrete spectra (sets of eigenvalues) in quantum mechanics, so the quantities can only be measured in discrete values. In particular, this leads to quantum numbers that take values in discrete sets of integers or half-integers; although they could approach infinity in some cases.

The tally of quantum numbers varies from system to system and has no universal answer. Hence these parameters must be found for each system to be analyzed. A quantized system requires at least one quantum number. The dynamics (i.e. time evolution) of any quantum system are described by a quantum operator in the form of a Hamiltonian, H. There is one quantum number of the system corresponding to the system's energy; i.e., one of the eigenvalues of the Hamiltonian. There is also one quantum number for each linearly independent operator O that commutes with the Hamiltonian. A complete set of commuting observables (CSCO) that commute with the Hamiltonian characterizes the system with all its quantum numbers. There is a one-to-one relationship between the quantum numbers and the operators of the CSCO, with each quantum number taking one of the eigenvalues of its corresponding operator. As a result of the different basis that may be arbitrarily chosen to form a complete set of commuting operators, different sets of quantum numbers may be used for the description of the same system in different situations.

Electron in a hydrogen-like atom

Four quantum numbers can describe an electron energy level in a hydrogen-like atom completely:

These quantum numbers are also used in the classical description of nuclear particle states (e.g. protons and neutrons).[ citation needed ] A quantum description of molecular orbitals requires other quantum numbers, because the symmetries of the molecular system are different.

Principal quantum number

The principal quantum number describes the electron shell of an electron. The value of n ranges from 1 to the shell containing the outermost electron of that atom, that is [12]

For example, in caesium (Cs), the outermost valence electron is in the shell with energy level 6, so an electron in caesium can have an n value from 1 to 6. The average distance between the electron and the nucleus increases with n.

Azimuthal quantum number

The azimuthal quantum number, also known as the orbital angular momentum quantum number, describes the subshell, and gives the magnitude of the orbital angular momentum through the relation

In chemistry and spectroscopy, = 0 is called s orbital, = 1, p orbital, = 2, d orbital, and = 3, f orbital.

The value of ranges from 0 to n − 1, so the first p orbital ( = 1) appears in the second electron shell (n = 2), the first d orbital ( = 2) appears in the third shell (n = 3), and so on: [13]

A quantum number beginning in n = 3, = 0, describes an electron in the s orbital of the third electron shell of an atom. In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of angular nodes present in an orbital. For example, for p orbitals, = 1 and thus the amount of angular nodes in a p orbital is 1.

Magnetic quantum number

The magnetic quantum number describes the specific orbital within the subshell, and yields the projection of the orbital angular momentum along a specified axis:

The values of m range from to , with integer intervals. [14] [ page needed ]

The s subshell ( = 0) contains only one orbital, and therefore the m of an electron in an s orbital will always be 0. The p subshell ( = 1) contains three orbitals, so the m of an electron in a p orbital will be −1, 0, or 1. The d subshell ( = 2) contains five orbitals, with m values of −2, −1, 0, 1, and 2.

Spin magnetic quantum number

The spin magnetic quantum number describes the intrinsic spin angular momentum of the electron within each orbital and gives the projection of the spin angular momentum S along the specified axis:

In general, the values of ms range from s to s, where s is the spin quantum number, associated with the magnitude of particle's intrinsic spin angular momentum: [15]

An electron state has spin number s = 1/2, consequently ms will be +1/2 ("spin up") or -1/2 "spin down" states. Since electron are fermions they obey the Pauli exclusion principle: each electron state must have different quantum numbers. Therefore, every orbital will be occupied with at most two electrons, one for each spin state.

The Aufbau principle and Hund's Rules

A multi-electron atom can be modeled qualitatively as a hydrogen like atom with higher nuclear charge and correspondingly more electrons. The occupation of the electron states in such an atom can be predicted by the Aufbau principle and Hund's empirical rules for the quantum numbers. The Aufbau principle fills orbitals based on their principal and azimuthal quantum numbers (lowest n + l first, with lowest n breaking ties; Hund's rule favors unpaired electrons in the outermost orbital). These rules are empirical but they can be related to electron physics. [16] :10 [17] :260

Spin-orbit coupled systems

When one takes the spin–orbit interaction into consideration, the L and S operators no longer commute with the Hamiltonian, and the eigenstates of the system no longer have well-defined orbital angular momentum and spin. Thus another set of quantum numbers should be used. This set includes [18] [19]

  1. The total angular momentum quantum number: which gives the total angular momentum through the relation
  2. The projection of the total angular momentum along a specified axis: analogous to the above and satisfies both and
  3. Parity
    This is the eigenvalue under reflection: positive (+1) for states which came from even and negative (−1) for states which came from odd . The former is also known as even parity and the latter as odd parity, and is given by

For example, consider the following 8 states, defined by their quantum numbers:

nmms + ssm + ms
(1)211+1/23/21/23/2
(2)2111/23/21/21/2
(3)210+1/23/21/21/2
(4)2101/23/21/21/2
(5)21−1+1/23/21/21/2
(6)21−11/23/21/23/2
(7)200+1/21/21/21/2
(8)2001/21/21/21/2

The quantum states in the system can be described as linear combination of these 8 states. However, in the presence of spin–orbit interaction, if one wants to describe the same system by 8 states that are eigenvectors of the Hamiltonian (i.e. each represents a state that does not mix with others over time), we should consider the following 8 states:

jmjparity
3/23/2oddcoming from state (1) above
3/21/2oddcoming from states (2) and (3) above
3/21/2oddcoming from states (4) and (5) above
3/23/2oddcoming from state (6) above
1/21/2oddcoming from states (2) and (3) above
1/21/2oddcoming from states (4) and (5) above
1/21/2evencoming from state (7) above
1/21/2evencoming from state (8) above

Atomic nuclei

In nuclei, the entire assembly of protons and neutrons (nucleons) has a resultant angular momentum due to the angular momenta of each nucleon, usually denoted I. If the total angular momentum of a neutron is jn = + s and for a proton is jp = + s (where s for protons and neutrons happens to be 1/2 again (see note)), then the nuclear angular momentum quantum numbersI are given by:

Note: The orbital angular momenta of the nuclear (and atomic) states are all integer multiples of ħ while the intrinsic angular momentum of the neutron and proton are half-integer multiples. It should be immediately apparent that the combination of the intrinsic spins of the nucleons with their orbital motion will always give half-integer values for the total spin, I, of any odd-A nucleus and integer values for any even-A nucleus.

Parity with the number I is used to label nuclear angular momentum states, examples for some isotopes of hydrogen (H), carbon (C), and sodium (Na) are; [20]

1
1
H
I = (1/2)+  9
6
C
I = (3/2)  20
11
Na
I = 2+
2
1
H
I = 1+  10
6
C
I = 0+  21
11
Na
I = (3/2)+
3
1
H
I = (1/2)+  11
6
C
I = (3/2)  22
11
Na
I = 3+
  12
6
C
I = 0+  23
11
Na
I = (3/2)+
  13
6
C
I = (1/2)  24
11
Na
I = 4+
  14
6
C
I = 0+  25
11
Na
I = (5/2)+
  15
6
C
I = (1/2)+  26
11
Na
I = 3+

The reason for the unusual fluctuations in I, even by differences of just one nucleon, are due to the odd and even numbers of protons and neutrons – pairs of nucleons have a total angular momentum of zero (just like electrons in orbitals), leaving an odd or even number of unpaired nucleons. The property of nuclear spin is an important factor for the operation of NMR spectroscopy in organic chemistry, [19] and MRI in nuclear medicine, [20] due to the nuclear magnetic moment interacting with an external magnetic field.

Elementary particles

Elementary particles contain many quantum numbers which are usually said to be intrinsic to them. However, it should be understood that the elementary particles are quantum states of the standard model of particle physics, and hence the quantum numbers of these particles bear the same relation to the Hamiltonian of this model as the quantum numbers of the Bohr atom does to its Hamiltonian. In other words, each quantum number denotes a symmetry of the problem. It is more useful in quantum field theory to distinguish between spacetime and internal symmetries.

Typical quantum numbers related to spacetime symmetries are spin (related to rotational symmetry), the parity, C-parity and T-parity (related to the Poincaré symmetry of spacetime). Typical internal symmetries[ clarification needed ] are lepton number and baryon number or the electric charge. (For a full list of quantum numbers of this kind see the article on flavour.)

Multiplicative quantum numbers

Most conserved quantum numbers are additive, so in an elementary particle reaction, the sum of the quantum numbers should be the same before and after the reaction. However, some, usually called a parity, are multiplicative; i.e., their product is conserved. All multiplicative quantum numbers belong to a symmetry (like parity) in which applying the symmetry transformation twice is equivalent to doing nothing (involution).

See also

Related Research Articles

<span class="mw-page-title-main">Atomic orbital</span> Function describing an electron in an atom

In quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.

<span class="mw-page-title-main">Baryon</span> Hadron (subatomic particle) that is composed of three quarks

In particle physics, a baryon is a type of composite subatomic particle that contains an odd number of valence quarks, conventionally three. Protons and neutrons are examples of baryons; because baryons are composed of quarks, they belong to the hadron family of particles. Baryons are also classified as fermions because they have half-integer spin.

<span class="mw-page-title-main">Bohr model</span> Atomic model introduced by Niels Bohr in 1913

In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's nuclear model, it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s. It consists of a small, dense nucleus surrounded by orbiting electrons. It is analogous to the structure of the Solar System, but with attraction provided by electrostatic force rather than gravity, and with the electron energies quantized.

<span class="mw-page-title-main">Hydrogen atom</span> Atom of the element hydrogen

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a nucleus of a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.

<span class="mw-page-title-main">Nuclear shell model</span> Model of the atomic nucleus

In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model utilizes the Pauli exclusion principle to model the structure of atomic nuclei in terms of energy levels. The first shell model was proposed by Dmitri Ivanenko in 1932. The model was developed in 1949 following independent work by several physicists, most notably Maria Goeppert Mayer and J. Hans D. Jensen, who received the 1963 Nobel Prize in Physics for their contributions to this model, and Eugene Wigner, who received the Nobel Prize alongside them for his earlier groundlaying work on the atomic nuclei.

In quantum mechanics, the principal quantum number is one of four quantum numbers assigned to each electron in an atom to describe that electron's state. Its values are natural numbers making it a discrete variable.

<span class="mw-page-title-main">Azimuthal quantum number</span> Quantum number denoting orbital angular momentum

In quantum mechanics, the azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes aspects of the angular shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers that describe the unique quantum state of an electron.

In atomic physics, a magnetic quantum number is a quantum number used to distinguish quantum states of an electron or other particle according to its angular momentum along a given axis in space. The orbital magnetic quantum number distinguishes the orbitals available within a given subshell of an atom. It specifies the component of the orbital angular momentum that lies along a given axis, conventionally called the z-axis, so it describes the orientation of the orbital in space. The spin magnetic quantum numberms specifies the z-axis component of the spin angular momentum for a particle having spin quantum number s. For an electron, s is 12, and ms is either +12 or −12, often called "spin-up" and "spin-down", or α and β. The term magnetic in the name refers to the magnetic dipole moment associated with each type of angular momentum, so states having different magnetic quantum numbers shift in energy in a magnetic field according to the Zeeman effect.

<span class="mw-page-title-main">Stern–Gerlach experiment</span> 1922 physical experiment demonstrating that atomic spin is quantized

In quantum physics, the Stern–Gerlach experiment demonstrated that the spatial orientation of angular momentum is quantized. Thus an atomic-scale system was shown to have intrinsically quantum properties. In the original experiment, silver atoms were sent through a spatially-varying magnetic field, which deflected them before they struck a detector screen, such as a glass slide. Particles with non-zero magnetic moment were deflected, owing to the magnetic field gradient, from a straight path. The screen revealed discrete points of accumulation, rather than a continuous distribution, owing to their quantized spin. Historically, this experiment was decisive in convincing physicists of the reality of angular-momentum quantization in all atomic-scale systems.

In physics and chemistry, the spin quantum number is a quantum number that describes the intrinsic angular momentum of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons.

In physics, a parity transformation is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates :

In quantum mechanics, angular momentum coupling is the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta. For instance, the orbit and spin of a single particle can interact through spin–orbit interaction, in which case the complete physical picture must include spin–orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle Schrödinger equation. In both cases the separate angular momenta are no longer constants of motion, but the sum of the two angular momenta usually still is. Angular momentum coupling in atoms is of importance in atomic spectroscopy. Angular momentum coupling of electron spins is of importance in quantum chemistry. Also in the nuclear shell model angular momentum coupling is ubiquitous.

In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847646917(29)×10−24 J⋅T−1. In units of the Bohr magneton (μB), it is −1.00115965218059(13) μB, a value that was measured with a relative accuracy of 1.3×10−13.

In molecular physics, the molecular term symbol is a shorthand expression of the group representation and angular momenta that characterize the state of a molecule, i.e. its electronic quantum state which is an eigenstate of the electronic molecular Hamiltonian. It is the equivalent of the term symbol for the atomic case. However, the following presentation is restricted to the case of homonuclear diatomic molecules, or other symmetric molecules with an inversion centre. For heteronuclear diatomic molecules, the u/g symbol does not correspond to any exact symmetry of the electronic molecular Hamiltonian. In the case of less symmetric molecules the molecular term symbol contains the symbol of the group representation to which the molecular electronic state belongs.

<span class="mw-page-title-main">Orbital motion (quantum)</span> Quantum mechanical property

Quantum orbital motion involves the quantum mechanical motion of rigid particles about some other mass, or about themselves. In classical mechanics, an object's orbital motion is characterized by its orbital angular momentum and spin angular momentum, which is the object's angular momentum about its own center of mass. In quantum mechanics there are analogous orbital and spin angular momenta which describe the orbital motion of a particle, represented as quantum mechanical operators instead of vectors.

<span class="mw-page-title-main">Degenerate energy levels</span> Energy level of a quantum system that corresponds to two or more different measurable states

In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a particular energy level is known as the degree of degeneracy of the level. It is represented mathematically by the Hamiltonian for the system having more than one linearly independent eigenstate with the same energy eigenvalue. When this is the case, energy alone is not enough to characterize what state the system is in, and other quantum numbers are needed to characterize the exact state when distinction is desired. In classical mechanics, this can be understood in terms of different possible trajectories corresponding to the same energy.

First quantization is a procedure for converting equations of classical particle equations into quantum wave equations. The companion concept of second quantization converts classical field equations in to quantum field equations.

A hydrogen-like atom (or hydrogenic atom) is any atom or ion with a single valence electron. These atoms are isoelectronic with hydrogen. Examples of hydrogen-like atoms include, but are not limited to, hydrogen itself, all alkali metals such as Rb and Cs, singly ionized alkaline earth metals such as Ca+ and Sr+ and other ions such as He+, Li2+, and Be3+ and isotopes of any of the above. A hydrogen-like atom includes a positively charged core consisting of the atomic nucleus and any core electrons as well as a single valence electron. Because helium is common in the universe, the spectroscopy of singly ionized helium is important in EUV astronomy, for example, of DO white dwarf stars.

Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.

In quantum mechanics, the eigenvalue of an observable is said to be a good quantum number if the observable is a constant of motion. In other words, the quantum number is good if the corresponding observable commutes with the Hamiltonian. If the system starts from the eigenstate with an eigenvalue , it remains on that state as the system evolves in time, and the measurement of always yields the same eigenvalue .

References

  1. Schrödinger, Erwin (1926). "Quantisation as an Eigenvalue Problem". Annalen der Physik. 81 (18): 109–139. Bibcode:1926AnP...386..109S. doi:10.1002/andp.19263861802.
  2. Whittaker, Edmund T. (1989). A history of the theories of aether & electricity. 2: The modern theories, 1900 - 1926 (Repr ed.). New York: Dover Publ. ISBN   978-0-486-26126-3.
  3. Heilbron, John L. (June 2013). "The path to the quantum atom". Nature. 498 (7452): 27–30. doi:10.1038/498027a. ISSN   0028-0836. PMID   23739408.
  4. Niels Bohr – Nobel Lecture. NobelPrize.org. Nobel Prize Outreach AB 2024. Sun. 25 Feb 2024.
  5. Eckert, Michael; Eckert, Michael; Artin, Tom (2013). Arnold Sommerfeld: science, life and turbulent times 1868-1951. New York: Springer. ISBN   978-1-4614-7461-6.
  6. Kragh, Helge (2012-05-17). Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913–1925. Oxford University Press. doi:10.1093/acprof:oso/9780199654987.003.0004. ISBN   978-0-19-965498-7.
  7. 1 2 Friedrich, Bretislav; Herschbach, Dudley (2003-12-01). "Stern and Gerlach: How a Bad Cigar Helped Reorient Atomic Physics". Physics Today. 56 (12): 53–59. Bibcode:2003PhT....56l..53F. doi:10.1063/1.1650229. ISSN   0031-9228.
  8. 1 2 Giulini, Domenico (2008-09-01). "Electron spin or "classically non-describable two-valuedness"". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 39 (3): 557–578. arXiv: 0710.3128 . Bibcode:2008SHPMP..39..557G. doi:10.1016/j.shpsb.2008.03.005. hdl:11858/00-001M-0000-0013-13C8-1. ISSN   1355-2198.
  9. Kragh, Helge (2012-05-17). Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913–1925. Oxford University Press. doi:10.1093/acprof:oso/9780199654987.003.0007. ISBN   978-0-19-965498-7.
  10. Brown, L.M. (1988). "Remarks on the history of isospin". In Winter, Klaus; Telegdi, Valentine L. (eds.). Festi-Val: Festschrift for Val Telegdi; essays in physics in honour of his 65th birthday; [a symposium ... was held at CERN, Geneva on 6 July 1987]. Amsterdam: North-Holland Physics Publ. ISBN   978-0-444-87099-5.
  11. 1 2 Baggott, J. E. (2013). The quantum story: a history in 40 moments (Impression: 3 ed.). Oxford: Oxford Univ. Press. ISBN   978-0-19-956684-6.
  12. Beiser, A. (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN   0-07-100144-1.[ page needed ]
  13. Atkins, P. W. (1977). Molecular Quantum Mechanics Parts I and II: An Introduction to Quantum Chemistry. Vol. 1. Oxford University Press. ISBN   0-19-855129-0.[ page needed ]
  14. Eisberg & Resnick 1985.
  15. Peleg, Y.; Pnini, R.; Zaarur, E.; Hecht, E. (2010). Quantum Mechanics. Schuam's Outlines (2nd ed.). McGraw Hill (USA). ISBN   978-0-07-162358-2.[ page needed ]
  16. Jolly, William L. (1984). Modern Inorganic Chemistry (1st ed.). McGraw-Hill. pp.  10–12. ISBN   0-07-032760-2.
  17. Levine, Ira N. (1983). Physical chemistry (2 ed.). New York: McGraw-Hill. ISBN   978-0-07-037421-8.
  18. Atkins, P. W. (1977). Molecular Quantum Mechanics Parts I and II: An Introduction to Quantum Chemistry. Vol. 1. Oxford University Press. ISBN   0-19-855129-0.[ page needed ]
  19. 1 2 Atkins, P. W. (1977). Molecular Quantum Mechanics Part III: An Introduction to Quantum Chemistry. Vol. 2. Oxford University Press.[ ISBN missing ][ page needed ]
  20. 1 2 Krane, K. S. (1988). Introductory Nuclear Physics. John Wiley & Sons. ISBN   978-0-471-80553-3.[ page needed ]

Further reading