Leggett inequality

Last updated

The Leggett inequalities, [1] named for Anthony James Leggett, who derived them, are a related pair of mathematical expressions concerning the correlations of properties of entangled particles. (As published by Leggett, the inequalities were exemplified in terms of relative angles of elliptical and linear polarizations.) They are fulfilled by a large class of physical theories based on particular non-local and realistic assumptions, that may be considered to be plausible or intuitive according to common physical reasoning.

Contents

The Leggett inequalities are violated by quantum mechanical theory. The results of experimental tests in 2007 and 2010 have shown agreement with quantum mechanics rather than the Leggett inequalities. [2] [3] Given that experimental tests of Bell's inequalities have ruled out local realism in quantum mechanics, the violation of Leggett's inequalities is considered to have falsified realism in quantum mechanics. [4] In quantum mechanics "realism" means "notion that physical systems possess complete sets of definite values for various parameters prior to, and independent of, measurement". [5]

See also

Related Research Articles

<span class="mw-page-title-main">EPR paradox</span> Early and influential critique leveled against quantum mechanics

The Einstein–Podolsky–Rosen paradox is a thought experiment proposed by physicists Albert Einstein, Boris Podolsky and Nathan Rosen (EPR), with which they argued that the description of physical reality provided by quantum mechanics was incomplete. In a 1935 paper titled "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?", they argued for the existence of "elements of reality" that were not part of quantum theory, and speculated that it should be possible to construct a theory containing them. Resolutions of the paradox have important implications for the interpretation of quantum mechanics.

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between measurements of quantum subsystems, even when spatially separated

Quantum entanglement is the physical phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories given some basic assumptions about the nature of measurement. The "local" in this case refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields can only occur at speeds no greater than the speed of light. "Hidden variables" are hypothetical properties possessed by quantum particles, properties that are undetectable but still affect the outcome of experiments. In the words of physicist John Stewart Bell, for whom this family of results is named, "If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."

Quantum indeterminacy is the apparent necessary incompleteness in the description of a physical system, that has become one of the characteristics of the standard description of quantum physics. Prior to quantum physics, it was thought that

In physics, the principle of locality states that an object is influenced directly only by its immediate surroundings. A theory that includes the principle of locality is said to be a "local theory". This is an alternative to the concept of instantaneous "action at a distance". Locality evolved out of the field theories of classical physics. The concept is that for an action at one point to have an influence at another point, something in the space between those points must mediate the action. To exert an influence, something, such as a wave or particle, must travel through the space between the two points, carrying the influence.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. The predictions that quantum physics makes are in general probabilistic. The mathematical tools for making predictions about what measurement outcomes may occur were developed during the 20th century and make use of linear algebra and functional analysis.

A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables to explain the behavior of particles like photons and electrons. To date, all Bell tests have found that the hypothesis of local hidden variables is inconsistent with the way that physical systems behave.

In the interpretation of quantum mechanics, a local hidden-variable theory is a hidden-variable theory that satisfies the condition of being consistent with local realism. This includes all types of the theory that attempt to account for the probabilistic features of quantum mechanics by the mechanism of underlying inaccessible variables, with the additional requirement from local realism that distant events be independent, ruling out instantaneous interactions between separate events.

<span class="mw-page-title-main">Anton Zeilinger</span> Austrian quantum physicist

Anton Zeilinger is an Austrian quantum physicist and Nobel laureate in physics of 2022. Zeilinger is professor of physics emeritus at the University of Vienna and senior scientist at the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences. Most of his research concerns the fundamental aspects and applications of quantum entanglement.

<span class="mw-page-title-main">Alain Aspect</span> French physicist

Alain Aspect is a French physicist noted for his experimental work on quantum entanglement.

In quantum mechanics, superdeterminism is a loophole in Bell's theorem. By postulating that all systems being measured are correlated with the choices of which measurements to make on them, the assumptions of the theorem are no longer fulfilled. A hidden variables theory which is superdeterministic can thus fulfill Bell's notion of local causality and still violate the inequalities derived from Bell's theorem. This makes it possible to construct a local hidden-variable theory that reproduces the predictions of quantum mechanics, for which a few toy models have been proposed. In addition to being deterministic, superdeterministic models also postulate correlations between the state that is measured and the measurement setting.

<span class="mw-page-title-main">Institute for Quantum Optics and Quantum Information</span> Member institute of the Austrian Academy of Sciences

The Institute for Quantum Optics and Quantum Information (IQOQI) is a member institute of the Austrian Academy of Sciences and was founded in November 2003, to create an Austrian research center for the newly developing fields of theoretical and experimental quantum optics and quantum information.

The Leggett–Garg inequality, named for Anthony James Leggett and Anupam Garg, is a mathematical inequality fulfilled by all macrorealistic physical theories. Here, macrorealism is a classical worldview defined by the conjunction of two postulates:

  1. Macrorealism per se: "A macroscopic object, which has available to it two or more macroscopically distinct states, is at any given time in a definite one of those states."
  2. Noninvasive measurability: "It is possible in principle to determine which of these states the system is in without any effect on the state itself, or on the subsequent system dynamics."
<span class="mw-page-title-main">John Clauser</span> American physicist

John Francis Clauser is an American theoretical and experimental physicist known for contributions to the foundations of quantum mechanics, in particular the Clauser–Horne–Shimony–Holt inequality.

<span class="mw-page-title-main">Quantum Bayesianism</span> Interpretation of quantum mechanics

In physics and the philosophy of physics, quantum Bayesianism is a collection of related approaches to the interpretation of quantum mechanics, of which the most prominent is QBism. QBism is an interpretation that takes an agent's actions and experiences as the central concerns of the theory. QBism deals with common questions in the interpretation of quantum theory about the nature of wavefunction superposition, quantum measurement, and entanglement. According to QBism, many, but not all, aspects of the quantum formalism are subjective in nature. For example, in this interpretation, a quantum state is not an element of reality—instead it represents the degrees of belief an agent has about the possible outcomes of measurements. For this reason, some philosophers of science have deemed QBism a form of anti-realism. The originators of the interpretation disagree with this characterization, proposing instead that the theory more properly aligns with a kind of realism they call "participatory realism", wherein reality consists of more than can be captured by any putative third-person account of it.

Anupam Garg is a professor in the department of Physics & Astronomy at Northwestern University, Illinois. He received his Ph.D. in 1983 from Cornell University. In 2012, he became a Fellow of the American Physical Society (APS) thanks to his work on molecular magnetism and macroscopic quantum phenomena.

Quantum contextuality is a feature of the phenomenology of quantum mechanics whereby measurements of quantum observables cannot simply be thought of as revealing pre-existing values. Any attempt to do so in a realistic hidden-variable theory leads to values that are dependent upon the choice of the other (compatible) observables which are simultaneously measured. More formally, the measurement result of a quantum observable is dependent upon which other commuting observables are within the same measurement set.

Applying classical methods of machine learning to the study of quantum systems is the focus of an emergent area of physics research. A basic example of this is quantum state tomography, where a quantum state is learned from measurement. Other examples include learning Hamiltonians, learning quantum phase transitions, and automatically generating new quantum experiments. Classical machine learning is effective at processing large amounts of experimental or calculated data in order to characterize an unknown quantum system, making its application useful in contexts including quantum information theory, quantum technologies development, and computational materials design. In this context, it can be used for example as a tool to interpolate pre-calculated interatomic potentials or directly solving the Schrödinger equation with a variational method.

Michael A. Horne was an American quantum physicist, famous for his work on the foundations of quantum mechanics.

Robert W. Spekkens is a Canadian theoretical quantum physicist working in the fields of quantum foundations and quantum information.

References

  1. Leggett, A. J. (2003). "Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem". Foundations of Physics. 33 (10): 1469–1493. doi:10.1023/A:1026096313729. ISSN   0015-9018. S2CID   12037612.
  2. Gröblacher, Simon; Paterek, Tomasz; Kaltenbaek, Rainer; Brukner, Časlav; Żukowski, Marek; Aspelmeyer, Markus; Zeilinger, Anton (2007). "An experimental test of non-local realism". Nature. 446 (7138): 871–875. arXiv: 0704.2529 . Bibcode:2007Natur.446..871G. doi:10.1038/nature05677. ISSN   0028-0836. PMID   17443179. S2CID   4412358.
  3. Romero, J; Leach, J; Jack, B; Barnett, S M; Padgett, M J; Franke-Arnold, S (2010). "Violation of Leggett inequalities in orbital angular momentum subspaces". New Journal of Physics. 12 (12): 123007. Bibcode:2010NJPh...12l3007R. doi: 10.1088/1367-2630/12/12/123007 . ISSN   1367-2630.
  4. Jon Cartwright (20 Apr 2007). "Quantum physics says goodbye to reality". Physics World. Retrieved 29 Mar 2019.
  5. Formaggio, J. A.; Kaiser, D. I.; Murskyj, M. M.; Weiss, T. E. (2016). "Violation of the Leggett-Garg Inequality in Neutrino Oscillations". Physical Review Letters. 117 (5): 050402. arXiv: 1602.00041 . Bibcode:2016PhRvL.117e0402F. doi:10.1103/PhysRevLett.117.050402. ISSN   0031-9007. PMID   27517759. S2CID   6127630.