Part of a series of articles about |
Quantum mechanics |
---|
In quantum mechanics, a density matrix (or density operator) is a matrix that describes an ensemble [1] of physical systems as quantum states (even if the ensemble contains only one system). It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles (sometimes ambiguously called mixed states). Mixed ensembles arise in quantum mechanics in two different situations:
Density matrices are thus crucial tools in areas of quantum mechanics that deal with mixed ensembles, such as quantum statistical mechanics, open quantum systems and quantum information.
The density matrix is a representation of a linear operator called the density operator. The density matrix is obtained from the density operator by a choice of an orthonormal basis in the underlying space. [2] In practice, the terms density matrix and density operator are often used interchangeably.
Pick a basis with states , in a two-dimensional Hilbert space, then the density operator is represented by the matrix where the diagonal elements are real numbers that sum to one (also called populations of the two states , ). The off-diagonal elements are complex conjugates of each other (also called coherences); they are restricted in magnitude by the requirement that be a positive semi-definite operator, see below.
A density operator is a positive semi-definite, self-adjoint operator of trace one acting on the Hilbert space of the system. [3] [4] [5] This definition can be motivated by considering a situation where some pure states (which are not necessarily orthogonal) are prepared with probability each. [6] This is known as an ensemble of pure states. The probability of obtaining projective measurement result when using projectors is given by [7] : 99 which makes the density operator, defined as a convenient representation for the state of this ensemble. It is easy to check that this operator is positive semi-definite, self-adjoint, and has trace one. Conversely, it follows from the spectral theorem that every operator with these properties can be written as for some states and coefficients that are non-negative and add up to one. [8] [7] : 102 However, this representation will not be unique, as shown by the Schrödinger–HJW theorem.
Another motivation for the definition of density operators comes from considering local measurements on entangled states. Let be a pure entangled state in the composite Hilbert space . The probability of obtaining measurement result when measuring projectors on the Hilbert space alone is given by [7] : 107 where denotes the partial trace over the Hilbert space . This makes the operator a convenient tool to calculate the probabilities of these local measurements. It is known as the reduced density matrix of on subsystem 1. It is easy to check that this operator has all the properties of a density operator. Conversely, the Schrödinger–HJW theorem implies that all density operators can be written as for some state .
A pure quantum state is a state that can not be written as a probabilistic mixture, or convex combination, of other quantum states. [5] There are several equivalent characterizations of pure states in the language of density operators. [9] : 73 A density operator represents a pure state if and only if:
It is important to emphasize the difference between a probabilistic mixture (i.e. an ensemble) of quantum states and the superposition of two states. If an ensemble is prepared to have half of its systems in state and the other half in , it can be described by the density matrix:
where and are assumed orthogonal and of dimension 2, for simplicity. On the other hand, a quantum superposition of these two states with equal probability amplitudes results in the pure state with density matrix
Unlike the probabilistic mixture, this superposition can display quantum interference. [7] : 81
Geometrically, the set of density operators is a convex set, and the pure states are the extremal points of that set. The simplest case is that of a two-dimensional Hilbert space, known as a qubit. An arbitrary mixed state for a qubit can be written as a linear combination of the Pauli matrices, which together with the identity matrix provide a basis for self-adjoint matrices: [10] : 126
where the real numbers are the coordinates of a point within the unit ball and
Points with represent pure states, while mixed states are represented by points in the interior. This is known as the Bloch sphere picture of qubit state space.
An example of pure and mixed states is light polarization. An individual photon can be described as having right or left circular polarization, described by the orthogonal quantum states and or a superposition of the two: it can be in any state (with ), corresponding to linear, circular, or elliptical polarization. Consider now a vertically polarized photon, described by the state . If we pass it through a circular polarizer that allows either only polarized light, or only polarized light, half of the photons are absorbed in both cases. This may make it seem like half of the photons are in state and the other half in state , but this is not correct: if we pass through a linear polarizer there is no absorption whatsoever, but if we pass either state or half of the photons are absorbed.
Unpolarized light (such as the light from an incandescent light bulb) cannot be described as any state of the form (linear, circular, or elliptical polarization). Unlike polarized light, it passes through a polarizer with 50% intensity loss whatever the orientation of the polarizer; and it cannot be made polarized by passing it through any wave plate. However, unpolarized light can be described as a statistical ensemble, e. g. as each photon having either polarization or polarization with probability 1/2. The same behavior would occur if each photon had either vertical polarization or horizontal polarization with probability 1/2. These two ensembles are completely indistinguishable experimentally, and therefore they are considered the same mixed state. For this example of unpolarized light, the density operator equals [9] : 75
There are also other ways to generate unpolarized light: one possibility is to introduce uncertainty in the preparation of the photon, for example, passing it through a birefringent crystal with a rough surface, so that slightly different parts of the light beam acquire different polarizations. Another possibility is using entangled states: a radioactive decay can emit two photons traveling in opposite directions, in the quantum state . The joint state of the two photons together is pure, but the density matrix for each photon individually, found by taking the partial trace of the joint density matrix, is completely mixed. [7] : 106
A given density operator does not uniquely determine which ensemble of pure states gives rise to it; in general there are infinitely many different ensembles generating the same density matrix. [11] Those cannot be distinguished by any measurement. [12] The equivalent ensembles can be completely characterized: let be an ensemble. Then for any complex matrix such that (a partial isometry), the ensemble defined by
will give rise to the same density operator, and all equivalent ensembles are of this form.
A closely related fact is that a given density operator has infinitely many different purifications, which are pure states that generate the density operator when a partial trace is taken. Let
be the density operator generated by the ensemble , with states not necessarily orthogonal. Then for all partial isometries we have that
is a purification of , where is an orthogonal basis, and furthermore all purifications of are of this form.
Let be an observable of the system, and suppose the ensemble is in a mixed state such that each of the pure states occurs with probability . Then the corresponding density operator equals
The expectation value of the measurement can be calculated by extending from the case of pure states:
where denotes trace. Thus, the familiar expression for pure states is replaced by
for mixed states. [9] : 73
Moreover, if has spectral resolution
where is the projection operator into the eigenspace corresponding to eigenvalue , the post-measurement density operator is given by [13] [14]
when outcome i is obtained. In the case where the measurement result is not known the ensemble is instead described by
If one assumes that the probabilities of measurement outcomes are linear functions of the projectors , then they must be given by the trace of the projector with a density operator. Gleason's theorem shows that in Hilbert spaces of dimension 3 or larger the assumption of linearity can be replaced with an assumption of non-contextuality. [15] This restriction on the dimension can be removed by assuming non-contextuality for POVMs as well, [16] [17] but this has been criticized as physically unmotivated. [18]
The von Neumann entropy of a mixture can be expressed in terms of the eigenvalues of or in terms of the trace and logarithm of the density operator . Since is a positive semi-definite operator, it has a spectral decomposition such that , where are orthonormal vectors, , and . Then the entropy of a quantum system with density matrix is
This definition implies that the von Neumann entropy of any pure state is zero. [19] : 217 If are states that have support on orthogonal subspaces, then the von Neumann entropy of a convex combination of these states,
is given by the von Neumann entropies of the states and the Shannon entropy of the probability distribution :
When the states do not have orthogonal supports, the sum on the right-hand side is strictly greater than the von Neumann entropy of the convex combination . [7] : 518
Given a density operator and a projective measurement as in the previous section, the state defined by the convex combination
which can be interpreted as the state produced by performing the measurement but not recording which outcome occurred, [10] : 159 has a von Neumann entropy larger than that of , except if . It is however possible for the produced by a generalized measurement, or POVM, to have a lower von Neumann entropy than . [7] : 514
Just as the Schrödinger equation describes how pure states evolve in time, the von Neumann equation (also known as the Liouville–von Neumann equation) describes how a density operator evolves in time. The von Neumann equation dictates that [20] [21] [22]
where the brackets denote a commutator.
This equation only holds when the density operator is taken to be in the Schrödinger picture, even though this equation seems at first look to emulate the Heisenberg equation of motion in the Heisenberg picture, with a crucial sign difference:
where is some Heisenberg picture operator; but in this picture the density matrix is not time-dependent, and the relative sign ensures that the time derivative of the expected value comes out the same as in the Schrödinger picture. [5]
If the Hamiltonian is time-independent, the von Neumann equation can be easily solved to yield
For a more general Hamiltonian, if is the wavefunction propagator over some interval, then the time evolution of the density matrix over that same interval is given by
The density matrix operator may also be realized in phase space. Under the Wigner map, the density matrix transforms into the equivalent Wigner function,
The equation for the time evolution of the Wigner function, known as Moyal equation, is then the Wigner-transform of the above von Neumann equation,
where is the Hamiltonian, and is the Moyal bracket, the transform of the quantum commutator.
The evolution equation for the Wigner function is then analogous to that of its classical limit, the Liouville equation of classical physics. In the limit of a vanishing Planck constant , reduces to the classical Liouville probability density function in phase space.
Density matrices are a basic tool of quantum mechanics, and appear at least occasionally in almost any type of quantum-mechanical calculation. Some specific examples where density matrices are especially helpful and common are as follows:
It is now generally accepted that the description of quantum mechanics in which all self-adjoint operators represent observables is untenable. [27] [28] For this reason, observables are identified with elements of an abstract C*-algebra A (that is one without a distinguished representation as an algebra of operators) and states are positive linear functionals on A. However, by using the GNS construction, we can recover Hilbert spaces that realize A as a subalgebra of operators.
Geometrically, a pure state on a C*-algebra A is a state that is an extreme point of the set of all states on A. By properties of the GNS construction these states correspond to irreducible representations of A.
The states of the C*-algebra of compact operators K(H) correspond exactly to the density operators, and therefore the pure states of K(H) are exactly the pure states in the sense of quantum mechanics.
The C*-algebraic formulation can be seen to include both classical and quantum systems. When the system is classical, the algebra of observables become an abelian C*-algebra. In that case the states become probability measures.
The formalism of density operators and matrices was introduced in 1927 by John von Neumann [29] and independently, but less systematically, by Lev Landau [30] and later in 1946 by Felix Bloch. [31] Von Neumann introduced the density matrix in order to develop both quantum statistical mechanics and a theory of quantum measurements. The name density matrix itself relates to its classical correspondence to a phase-space probability measure (probability distribution of position and momentum) in classical statistical mechanics, which was introduced by Eugene Wigner in 1932. [3]
In contrast, the motivation that inspired Landau was the impossibility of describing a subsystem of a composite quantum system by a state vector. [30]
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.
Quantum decoherence is the loss of quantum coherence. Quantum decoherence has been studied to understand how quantum systems convert to systems which can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have confirmed some of the key issues. Quantum computing relies on quantum coherence and is one of the primary practical applications of the concept.
In mathematics as well as physics, a linear operator acting on an inner product space is called positive-semidefinite if, for every , and , where is the domain of . Positive-semidefinite operators are denoted as . The operator is said to be positive-definite, and written , if for all .
In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.
Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics.
In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.
In linear algebra and functional analysis, the partial trace is a generalization of the trace. Whereas the trace is a scalar-valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the relative state interpretation.
In quantum mechanics, the interaction picture is an intermediate representation between the Schrödinger picture and the Heisenberg picture. Whereas in the other two pictures either the state vector or the operators carry time dependence, in the interaction picture both carry part of the time dependence of observables. The interaction picture is useful in dealing with changes to the wave functions and observables due to interactions. Most field-theoretical calculations use the interaction representation because they construct the solution to the many-body Schrödinger equation as the solution to the free-particle problem plus some unknown interaction parts.
In physics, the von Neumann entropy, named after John von Neumann, is an extension of the concept of Gibbs entropy from classical statistical mechanics to quantum statistical mechanics. For a quantum-mechanical system described by a density matrix ρ, the von Neumann entropy is
In quantum mechanics, separable states are multipartite quantum states that can be written as a convex combination of product states. Product states are multipartite quantum states that can be written as a tensor product of states in each space. The physical intuition behind these definitions is that product states have no correlation between the different degrees of freedom, while separable states might have correlations, but all such correlations can be explained as due to a classical random variable, as opposed as being due to entanglement.
In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.
In quantum mechanics, notably in quantum information theory, fidelity quantifies the "closeness" between two density matrices. It expresses the probability that one state will pass a test to identify as the other. It is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.
In physics, a superoperator is a linear operator acting on a vector space of linear operators.
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring. It is a fundamental concept in all areas of quantum physics.
In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as where is the density matrix of the state and is the trace operation. The purity defines a measure on quantum states, giving information on how much a state is mixed.
In quantum mechanics, and especially quantum information and the study of open quantum systems, the trace distanceT is a metric on the space of density matrices and gives a measure of the distinguishability between two states. It is the quantum generalization of the Kolmogorov distance for classical probability distributions.
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system represented by the state. Knowledge of the quantum state, and the rules for the system's evolution in time, exhausts all that can be known about a quantum system.
This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.
The entropy of entanglement is a measure of the degree of quantum entanglement between two subsystems constituting a two-part composite quantum system. Given a pure bipartite quantum state of the composite system, it is possible to obtain a reduced density matrix describing knowledge of the state of a subsystem. The entropy of entanglement is the Von Neumann entropy of the reduced density matrix for any of the subsystems. If it is non-zero, it indicates the two subsystems are entangled.
In quantum information theory and quantum optics, the Schrödinger–HJW theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Erwin Schrödinger, Lane P. Hughston, Richard Jozsa and William Wootters. The result was also found independently by Nicolas Gisin, and by Nicolas Hadjisavvas building upon work by Ed Jaynes, while a significant part of it was likewise independently discovered by N. David Mermin. Thanks to its complicated history, it is also known by various other names such as the GHJW theorem, the HJW theorem, and the purification theorem.