Timeline of quantum computing and communication

Last updated

Contents

This is a timeline of quantum computing .

1960s

1968

1970s

1970

1973

1975

1976

1980s

1980

1981

1982

1984

1985

1988

1989

1990s

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000s

2000

2001

2002

2003

2004

2005

2006

2007

2008

Chip constructed by D-Wave Systems Inc. designed to operate as a 128-qubit superconducting adiabatic quantum optimization processor, mounted in a sample holder (2009) DWave 128chip.jpg
Chip constructed by D-Wave Systems Inc. designed to operate as a 128-qubit superconducting adiabatic quantum optimization processor, mounted in a sample holder (2009)

2009

2010s

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

IBM Q System One (2019), the first circuit-based commercial quantum computer IBM Q system (Fraunhofer 2).jpg
IBM Q System One (2019), the first circuit-based commercial quantum computer

2020s

2020

2021

Simplified scale mode of a quantum computing demonstrator housed in two 19-inch racks with major components labeled Simplified scale model of the quantum computing demonstrator housed in two 19-inch racks with major components labeled.png
Simplified scale mode of a quantum computing demonstrator housed in two 19-inch racks with major components labeled

2022

2023

2024

See also

Related Research Articles

<span class="mw-page-title-main">Quantum teleportation</span> Physical phenomenon

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

<span class="mw-page-title-main">Quantum entanglement</span> Physics phenomenon

Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical physics and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

In logic circuits, the Toffoli gate, also known as the CCNOT gate (“controlled-controlled-not”), invented by Tommaso Toffoli, is a CNOT gate with two control qubits and one target qubit. That is, the target qubit will be inverted if the first and second qubits are both 1. It is a universal reversible logic gate, which means that any classical reversible circuit can be constructed from Toffoli gates.

Quantum error correction (QEC) is a set of techniques used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum state preparation, and faulty measurements. Effective quantum error correction would allow quantum computers with low qubit fidelity to execute algorithms of higher complexity or greater circuit depth.

<span class="mw-page-title-main">Trapped-ion quantum computer</span> Proposed quantum computer implementation

A trapped-ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap. Lasers are applied to induce coupling between the qubit states or coupling between the internal qubit states and the external motional states.

Quantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a machine able to perform quantum circuits on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.

A quantum bus is a device which can be used to store or transfer information between independent qubits in a quantum computer, or combine two qubits into a superposition. It is the quantum analog of a classical bus.

<span class="mw-page-title-main">One-way quantum computer</span> Method of quantum computing

The one-way quantum computer, also known as measurement-based quantum computer (MBQC), is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.

In quantum information and quantum computing, a cluster state is a type of highly entangled state of multiple qubits. Cluster states are generated in lattices of qubits with Ising type interactions. A cluster C is a connected subset of a d-dimensional lattice, and a cluster state is a pure state of the qubits located on C. They are different from other types of entangled states such as GHZ states or W states in that it is more difficult to eliminate quantum entanglement in the case of cluster states. Another way of thinking of cluster states is as a particular instance of graph states, where the underlying graph is a connected subset of a d-dimensional lattice. Cluster states are especially useful in the context of the one-way quantum computer. For a comprehensible introduction to the topic see.

Within quantum technology, a quantum sensor utilizes properties of quantum mechanics, such as quantum entanglement, quantum interference, and quantum state squeezing, which have optimized precision and beat current limits in sensor technology. The field of quantum sensing deals with the design and engineering of quantum sources and quantum measurements that are able to beat the performance of any classical strategy in a number of technological applications. This can be done with photonic systems or solid state systems.

<span class="mw-page-title-main">Yoshihisa Yamamoto (scientist)</span> Japanese applied physicist (born 1950)

Yoshihisa Yamamoto is the director of Physics & Informatics Laboratories, NTT Research, Inc. He is also Professor (Emeritus) at Stanford University and National Institute of Informatics (Tokyo).

<span class="mw-page-title-main">Quantum simulator</span> Simulators of quantum mechanical systems

Quantum simulators permit the study of a quantum system in a programmable fashion. In this instance, simulators are special purpose devices designed to provide insight about specific physics problems. Quantum simulators may be contrasted with generally programmable "digital" quantum computers, which would be capable of solving a wider class of quantum problems.

In quantum mechanics, the cat state, named after Schrödinger's cat, refers to a quantum state composed of a superposition of two other states of flagrantly contradictory aspects. Generalizing Schrödinger's thought experiment, any other quantum superposition of two macroscopically distinct states is also referred to as a cat state. A cat state could be of one or more modes or particles, therefore it is not necessarily an entangled state. Such cat states have been experimentally realized in various ways and at various scales.

<span class="mw-page-title-main">Christopher Monroe</span> American physicist

Christopher Roy Monroe is an American physicist and engineer in the areas of atomic, molecular, and optical physics and quantum information science, especially quantum computing. He directs one of the leading research and development efforts in ion trap quantum computing. Monroe is the Gilhuly Family Presidential Distinguished Professor of Electrical and Computer Engineering and Physics at Duke University and was College Park Professor of Physics at the University of Maryland and Fellow of the Joint Quantum Institute and Joint Center for Quantum Computer Science until 2020 when he moved to Duke. He is also co-founder of IonQ, Inc.

In quantum computing, quantum supremacy or quantum advantage is the goal of demonstrating that a programmable quantum computer can solve a problem that no classical computer can solve in any feasible amount of time, irrespective of the usefulness of the problem. The term was coined by John Preskill in 2011, but the concept dates to Yuri Manin's 1980 and Richard Feynman's 1981 proposals of quantum computing.

Continuous-variable (CV) quantum information is the area of quantum information science that makes use of physical observables, like the strength of an electromagnetic field, whose numerical values belong to continuous intervals. One primary application is quantum computing. In a sense, continuous-variable quantum computation is "analog", while quantum computation using qubits is "digital." In more technical terms, the former makes use of Hilbert spaces that are infinite-dimensional, while the Hilbert spaces for systems comprising collections of qubits are finite-dimensional. One motivation for studying continuous-variable quantum computation is to understand what resources are necessary to make quantum computers more powerful than classical ones.

In quantum computing, a qubit is a unit of information analogous to a bit in classical computing, but it is affected by quantum mechanical properties such as superposition and entanglement which allow qubits to be in some ways more powerful than classical bits for some tasks. Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations.

In quantum computing, quantum memory is the quantum-mechanical version of ordinary computer memory. Whereas ordinary memory stores information as binary states, quantum memory stores a quantum state for later retrieval. These states hold useful computational information known as qubits. Unlike the classical memory of everyday computers, the states stored in quantum memory can be in a quantum superposition, giving much more practical flexibility in quantum algorithms than classical information storage.

References

  1. Mor, Tal; Renner, Renato (2014). "Preface". Natural Computing. 13 (4): 447–452. doi:10.1007/s11047-014-9464-3.
  2. Park, James (1970). "The concept of transition in quantum mechanics". Foundations of Physics . 1 (1): 23–33. Bibcode:1970FoPh....1...23P. CiteSeerX   10.1.1.623.5267 . doi:10.1007/BF00708652. S2CID   55890485.
  3. Bennett, C. (November 1973). "Logical Reversibility of Computation" (PDF). IBM Journal of Research and Development. 17 (6): 525–532. doi:10.1147/rd.176.0525.
  4. Poplavskii, R. P. (1975). "Thermodynamical models of information processing". Uspekhi Fizicheskikh Nauk (in Russian). 115 (3): 465–501. doi: 10.3367/UFNr.0115.197503d.0465 .
  5. Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics. 22 (5): 563–591. Bibcode:1980JSP....22..563B. doi:10.1007/bf01011339. S2CID   122949592.
  6. Manin, Yu I (1980). Vychislimoe i nevychislimoe (Computable and Noncomputable) (in Russian). Soviet Radio. pp. 13–15. Archived from the original on May 10, 2013. Retrieved March 4, 2013.
  7. Technical Report MIT/LCS/TM-151 (1980) and an adapted and condensed version: Toffoli, Tommaso (1980). "Reversible computing" (PDF). In J. W. de Bakker and J. van Leeuwen (ed.). Automata, Languages and Programming. Automata, Languages and Programming, Seventh Colloquium. Lecture Notes in Computer Science. Vol. 85. Noordwijkerhout, Netherlands: Springer Verlag. pp. 632–644. doi:10.1007/3-540-10003-2_104. ISBN   3-540-10003-2. Archived from the original (PDF) on April 15, 2010.
  8. Garfinkel, Simson (April 27, 2021). "Tomorrow's computer, yesterday: Four decades ago at Endicott House, an MIT professor convened a conference that launched quantum computing". MIT News. p. 10.
  9. Benioff, Paul A. (April 1, 1982). "Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: Application to Turing machines". International Journal of Theoretical Physics. 21 (3): 177–201. Bibcode:1982IJTP...21..177B. doi:10.1007/BF01857725. ISSN   1572-9575. S2CID   122151269.
  10. "Simulating physics with computers" (PDF). Archived from the original (PDF) on August 30, 2019. Retrieved July 5, 2023.
  11. Benioff, Paul A. (1982). "Quantum mechanical hamiltonian models of turing machines". Journal of Statistical Physics. 29 (3): 515–546. Bibcode:1982JSP....29..515B. doi:10.1007/BF01342185. S2CID   14956017.
  12. Wootters, William K.; Zurek, Wojciech H. (1982). "A single quantum cannot be cloned". Nature. 299 (5886): 802–803. Bibcode:1982Natur.299..802W. doi:10.1038/299802a0. S2CID   4339227.
  13. Dieks, Dennis (1982). "Communication by EPR devices". Physics Letters A. 92 (6): 271–272. Bibcode:1982PhLA...92..271D. CiteSeerX   10.1.1.654.7183 . doi:10.1016/0375-9601(82)90084-6.
  14. Feynman, Richard (1982). "Simulating physics with computers". International Journal of Theoretical Physics. 21 (6): 467–488. Bibcode:1982IJTP...21..467F. doi:10.1007/BF02650179.
  15. Bennett, Charles H.; Brassard, Gilles (1984). "Quantum cryptography: Public key distribution and coin tossing". Theoretical Computer Science. Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84. 560: 7–11. arXiv: 2003.06557 . doi: 10.1016/j.tcs.2014.05.025 . ISSN   0304-3975.
  16. Peres, Asher (1985). "SReversible Logic and Quantum Compzters". Physical Review A. 32 (6): 3266–3276. Bibcode:1985PhRvA..32.3266P. doi:10.1103/PhysRevA.32.3266. PMID   9896493.
  17. Igeta, K.; Yamamoto, Yoshihisa (July 18, 1988). "Quantum mechanical computers with single atom and photon fields". International Conference on Quantum Electronics (1988), Paper TuI4. Optica Publishing Group: TuI4.
  18. Milburn, Gerard J. (May 1, 1989). "Quantum optical Fredkin gate". Physical Review Letters. 62 (18): 2124–2127. Bibcode:1989PhRvL..62.2124M. doi:10.1103/PhysRevLett.62.2124. PMID   10039862.
  19. Ray, P.; Chakrabarti, B. K.; Chakrabarti, A. (1989). "Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations". Physical Review B. 39 (16): 11828–11832. Bibcode:1989PhRvB..3911828R. doi:10.1103/PhysRevB.39.11828. PMID   9948016.
  20. Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation". Rev. Mod. Phys. 80 (3): 1061–1081. arXiv: 0801.2193 . Bibcode:2008RvMP...80.1061D. CiteSeerX   10.1.1.563.9990 . doi:10.1103/RevModPhys.80.1061. S2CID   14255125.
  21. Ekert, A. K. (1991). "Quantum cryptography based on Bell's theorem". Physical Review Letters. 67 (6): 661–663. Bibcode:1991PhRvL..67..661E. doi:10.1103/PhysRevLett.67.661. PMID   10044956. S2CID   27683254.
  22. Waki, I.; Kassner, S.; Birkl, G.; Walther, H. (March 30, 1992). "Observation of ordered structures of laser-cooled ions in a quadrupole storage ring". Physical Review Letters. 68 (13): 2007–2010. Bibcode:1992PhRvL..68.2007W. doi:10.1103/PhysRevLett.68.2007. PMID   10045280.
  23. Birkl, G.; Kassner, S.; Walther, H. (May 28, 1992). "Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole storage ring". Nature. 357 (6376): 310–313. doi:10.1038/357310a0.
  24. Raizen, M. G.; Gilligan, J. M.; Bergquist, J. C.; Itano, W. M.; Wineland, D. J. (May 1, 1992). "Ionic crystals in a linear Paul trap". Physical Review A. 45 (9): 6493–6501. Bibcode:1992PhRvA..45.6493R. doi:10.1103/PhysRevA.45.6493. PMID   9907772.
  25. Chuang, Isaac L.; Yamamoto, Yoshihisa (1995). "Simple quantum computer". Physical Review A. 52 (5): 3489–3496. arXiv: quant-ph/9505011 . Bibcode:1995PhRvA..52.3489C. doi:10.1103/PhysRevA.52.3489. PMID   9912648.
  26. Shor, Peter W. (1995). "Scheme for reducing decoherence in quantum computer memory". Physical Review A. 52 (4): R2493 –R2496. Bibcode:1995PhRvA..52.2493S. doi:10.1103/PhysRevA.52.R2493. PMID   9912632.
  27. Monroe, C.; Meekhof, D. M.; King, B. E.; Itano, W. M.; Wineland, D. J. (December 18, 1995). "Demonstration of a Fundamental Quantum Logic Gate" (PDF). Physical Review Letters. 75 (25): 4714–4717. Bibcode:1995PhRvL..75.4714M. doi: 10.1103/PhysRevLett.75.4714 . PMID   10059979 . Retrieved December 29, 2007.
  28. Kak, S. C. (1995). "Quantum Neural Computing". Advances in Imaging and Electron Physics. 94: 259–313. doi:10.1016/S1076-5670(08)70147-2. ISBN   9780120147366.
  29. Chrisley, R. (1995). Pyllkkänen, P.; Pyllkkö, P. (eds.). "Quantum learning". New Directions in Cognitive Science. Finnish Society for Artificial Intelligence.
  30. Steane, Andrew (1996). "Multiple-Particle Interference and Quantum Error Correction". Proceedings of the Royal Society of London A. 452 (1954): 2551–2577. arXiv: quant-ph/9601029 . Bibcode:1996RSPSA.452.2551S. doi:10.1098/rspa.1996.0136. S2CID   8246615. Archived from the original on May 19, 2006. Retrieved April 5, 2020.
  31. DiVincenzo, David P. (1996). "Topics in Quantum Computers". arXiv: cond-mat/9612126 . Bibcode:1996cond.mat.12126D.
  32. Lloyd, Lloyd (1996). "Universal Quantum Simulators". Science. 273 (5278): 1073–1078. Bibcode:1996Sci...273.1073L. doi:10.1126/science.273.5278.1073. PMID   8688088.
  33. Kitaev, A. Yu (2003). "Fault-tolerant quantum computation by anyons". Annals of Physics. 303 (1): 2–30. arXiv: quant-ph/9707021 . Bibcode:2003AnPhy.303....2K. doi:10.1016/S0003-4916(02)00018-0. S2CID   119087885.
  34. Loss, Daniel; DiVincenzo, David P. (January 1, 1998). "Quantum Computation with Quantum Dots". Physical Review A. 57 (1): 120–126. arXiv: cond-mat/9701055 . Bibcode:1998PhRvA..57..120L. doi:10.1103/PhysRevA.57.120. ISSN   1050-2947. S2CID   13152124.
  35. Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Mark (April 13, 1998). "Experimental Implementation of Fast Quantum Searching". Physical Review Letters. 80 (15): 3408–3411. Bibcode:1998PhRvL..80.3408C. doi:10.1103/PhysRevLett.80.3408. S2CID   13891055.
  36. Kane, B. E. (May 14, 1998). "A silicon-based nuclear spin quantum computer". Nature. 393 (6681): 133–137. Bibcode:1998Natur.393..133K. doi:10.1038/30156. ISSN   0028-0836. S2CID   8470520.
  37. Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Markdoi (April 1998). "Experimental Implementation of Fast Quantum Searching". Physical Review Letters. 80 (15). American Physical Society: 3408–3411. Bibcode:1998PhRvL..80.3408C. doi:10.1103/PhysRevLett.80.3408.
  38. "Hidetoshi Nishimori – Applying quantum annealing to computers". Tokyo Institute of Technology. Retrieved September 8, 2022.
  39. Gottesman, Daniel (1999). "The Heisenberg Representation of Quantum Computers". In Corney, S. P.; Delbourgo, R.; Jarvis, P. D. (eds.). Proceedings of the Xxii International Colloquium on Group Theoretical Methods in Physics. Vol. 22. Cambridge, Massachusetts: International Press. pp. 32–43. arXiv: quant-ph/9807006v1 . Bibcode:1998quant.ph..7006G.
  40. Braunstein, S. L.; Caves, C. M.; Jozsa, R.; Linden, N.; Popescu, S.; Schack, R. (1999). "Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing". Physical Review Letters. 83 (5): 1054–1057. arXiv: quant-ph/9811018 . Bibcode:1999PhRvL..83.1054B. doi:10.1103/PhysRevLett.83.1054. S2CID   14429986.
  41. Nakamura, Y.; Pashkin, Yu A.; Tsai, J. S. (April 1999). "Coherent control of macroscopic quantum states in a single-Cooper-pair box". Nature. 398 (6730): 786–788. arXiv: cond-mat/9904003 . Bibcode:1999Natur.398..786N. doi:10.1038/19718. ISSN   1476-4687. S2CID   4392755.
  42. Linden, Noah; Popescu, Sandu (2001). "Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation?". Physical Review Letters. 87 (4): 047901. arXiv: quant-ph/9906008 . Bibcode:2001PhRvL..87d7901L. doi:10.1103/PhysRevLett.87.047901. PMID   11461646. S2CID   10533287.
  43. Raussendorf, R.; Briegel, H. J. (2001). "A One-Way Quantum Computer". Physical Review Letters . 86 (22): 5188–91. Bibcode:2001PhRvL..86.5188R. CiteSeerX   10.1.1.252.5345 . doi:10.1103/PhysRevLett.86.5188. PMID   11384453.
  44. "Quick facts | Institute for Quantum Computing | University of Waterloo". Institute for Quantum Computing. May 7, 2019. Archived from the original on May 7, 2019. Retrieved December 24, 2024.
  45. Dumke, R.; Volk, M.; Müther, T.; Buchkremer, F. B. J.; Birkl, G.; Ertmer, W. (August 8, 2002). "Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits". Physical Review Letters. 89 (9): 097903. arXiv: quant-ph/0110140 . Bibcode:2002PhRvL..89i7903D. doi:10.1103/PhysRevLett.89.097903. PMID   12190441.
  46. Gulde, S.; Riebe, M.; Lancaster, G. P. T.; Becher, C.; Eschner, J.; Häffner, H.; Schmidt-Kaler, F.; Chuang, I. L.; Blatt, R. (January 2, 2003). "Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer". Nature . 421 (6918): 48–50. Bibcode:2003Natur.421...48G. doi:10.1038/nature01336. PMID   12511949. S2CID   4401708.
  47. Pittman, T. B.; Fitch, M. J.; Jacobs, B. C.; Franson, J. D. (2003). "Experimental controlled-not logic gate for single photons in the coincidence basis". Physical Review A. 68 (3): 032316. arXiv: quant-ph/0303095 . Bibcode:2003PhRvA..68c2316P. doi:10.1103/physreva.68.032316. S2CID   119476903.
  48. O'Brien, J. L.; Pryde, G. J.; White, A. G.; Ralph, T. C.; Branning, D. (2003). "Demonstration of an all-optical quantum controlled-NOT gate". Nature. 426 (6964): 264–267. arXiv: quant-ph/0403062 . Bibcode:2003Natur.426..264O. doi:10.1038/nature02054. PMID   14628045. S2CID   9883628.
  49. Schmidt-Kaler, F.; Häffner, H.; Riebe, M.; Gulde, S.; Lancaster, G. P. T.; Deutschle, T.; Becher, C.; Roos, C. F.; Eschner, J.; Blatt, R. (March 27, 2003). "Realization of the Cirac-Zoller controlled-NOT quantum gate". Nature . 422 (6930): 408–411. Bibcode:2003Natur.422..408S. doi:10.1038/nature01494. PMID   12660777. S2CID   4401898.
  50. Riebe, M.; Häffner, H.; Roos, C. F.; Hänsel, W.; Benhelm, J.; Lancaster, G. P. T.; Körber, T. W.; Becher, C.; Schmidt-Kaler, F.; James, D. F. V.; Blatt, R. (June 17, 2004). "Deterministic quantum teleportation with atoms". Nature . 429 (6993): 734–737. Bibcode:2004Natur.429..734R. doi:10.1038/nature02570. PMID   15201903. S2CID   4397716.
  51. Zhao, Z.; Chen, Y. A.; Zhang, A. N.; Yang, T.; Briegel, H. J.; Pan, J. W. (2004). "Experimental demonstration of five-photon entanglement and open-destination teleportation". Nature. 430 (6995): 54–58. arXiv: quant-ph/0402096 . Bibcode:2004Natur.430...54Z. doi:10.1038/nature02643. PMID   15229594. S2CID   4336020.
  52. Dumé, Belle (November 22, 2005). "Breakthrough for quantum measurement". PhysicsWeb. Retrieved August 10, 2018.
  53. Häffner, H.; Hänsel, W.; Roos, C. F.; Benhelm, J.; Chek-Al-Kar, D.; Chwalla, M.; Körber, T.; Rapol, U. D.; Riebe, M.; Schmidt, P. O.; Becher, C.; Gühne, O.; Dür, W.; Blatt, R. (December 1, 2005). "Scalable multiparticle entanglement of trapped ions". Nature. 438 (7068): 643–646. arXiv: quant-ph/0603217 . Bibcode:2005Natur.438..643H. doi:10.1038/nature04279. PMID   16319886. S2CID   4411480.
  54. "Bang-bang: a step closer to quantum supercomputers". England: University of Oxford. January 4, 2006. Archived from the original on August 30, 2018. Retrieved December 29, 2007.
  55. Dowling, Jonathan P. (2006). "To Compute or Not to Compute?". Nature. 439 (7079): 919–920. Bibcode:2006Natur.439..919D. doi: 10.1038/439919a . PMID   16495978. S2CID   4327844.
  56. Dumé, Belle (February 23, 2007). "Entanglement heats up". Physics World. Archived from the original on October 19, 2007.
  57. "Captain Kirk's clone and the eavesdropper" (Press release). England: University of York. February 16, 2006. Archived from the original on February 7, 2007. Retrieved December 29, 2007.
  58. "Soft Machines – Some personal views on nanotechnology, science and science policy from Richard Jones". June 23, 2023. Retrieved July 5, 2023.
  59. Simonite, Tom (June 8, 2010). "Error-check breakthrough in quantum computing". New Scientist. Retrieved May 20, 2010.
  60. "12-qubits Reached In Quantum Information Quest". ScienceDaily. May 8, 2006. Retrieved May 20, 2010.
  61. Simonite, Tom (July 7, 2010). "Flat 'ion trap' holds quantum computing promise". New Scientist. Retrieved May 20, 2010.
  62. Luerweg, Frank (July 12, 2006). "Quantum Computer: Laser tweezers sort atoms". PhysOrg.com. Archived from the original on December 15, 2007. Retrieved December 29, 2007.
  63. "'Electron-spin' trick boosts quantum computing". New Scientist. August 16, 2006. Archived from the original on November 22, 2006. Retrieved December 29, 2007.
  64. Berger, Michael (August 16, 2006). "Quantum Dot Molecules – One Step Further Towards Quantum Computing". Newswire Today. Retrieved December 29, 2007.
  65. "Spinning new theory on particle spin brings science closer to quantum computing". PhysOrg.com. September 7, 2006. Archived from the original on January 17, 2008. Retrieved December 29, 2007.
  66. Merali, Zeeya (October 4, 2006). "Spooky steps to a quantum network". New Scientist. 192 (2572): 12. doi:10.1016/s0262-4079(06)60639-8 . Retrieved December 29, 2007.
  67. Zyga, Lisa (October 24, 2006). "Scientists present method for entangling macroscopic objects". PhysOrg.com. Archived from the original on October 13, 2007. Retrieved December 29, 2007.
  68. Kloeppel, James E. (November 2, 2006). "Quantum coherence possible in incommensurate electronic systems". Champaign-Urbana, Illinois: University of Illinois. Retrieved August 19, 2010.
  69. "A Quantum (Computer) Step: Study Shows It's Feasible to Read Data Stored as Nuclear 'Spins'". PhysOrg.com. November 19, 2006. Archived from the original on September 29, 2007. Retrieved December 29, 2007.
  70. Hecht, Jeff (January 8, 2007). "Nanoscopic 'coaxial cable' transmits light". New Scientist. Retrieved December 30, 2007.
  71. "Toshiba unveils quantum security". The Engineer. February 21, 2007. Archived from the original on March 4, 2007. Retrieved December 30, 2007.
  72. Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao; Pan, Jian-Wei (2007). "Experimental entanglement of six photons in graph states". Nature Physics. 3 (2): 91–95. arXiv: quant-ph/0609130 . Bibcode:2007NatPh...3...91L. doi:10.1038/nphys507. S2CID   16319327.
  73. Danos, V.; Kashefi, E.; Panangaden, P. (2007). "The measurement calculus". Journal of the Association for Computing Machinery. 54 (2): 8. arXiv: 0704.1263 . doi:10.1145/1219092.1219096. S2CID   5851623.
  74. Marquit, Miranda (April 18, 2007). "First use of Deutsch's Algorithm in a cluster state quantum computer". PhysOrg.com. Archived from the original on January 17, 2008. Retrieved December 30, 2007.
  75. Merali, Zeeya (March 15, 2007). "The universe is a string-net liquid". New Scientist . Retrieved December 30, 2007.
  76. "A Single-Photon Server with Just One Atom" (Press release). Max Planck Society. March 12, 2007. Retrieved December 30, 2007.
  77. Bush, Steve (April 19, 2007). "Cambridge team closer to working quantum computer". Electronics Weekly . Archived from the original on May 15, 2012. Retrieved December 30, 2007.
  78. Farivar, Cyrus (May 7, 2007). "It's the "Wiring" That's Tricky in Quantum Computing". Wired. Archived from the original on July 6, 2008. Retrieved December 30, 2007.
  79. "NEC, JST, and RIKEN Successfully Demonstrate World's First Controllably Coupled Qubits" (Press release). Media-Newswire.com. May 8, 2007. Retrieved December 30, 2007.
  80. Minkel, J. R. (May 16, 2007). "Spintronics Breaks the Silicon Barrier". Scientific American . Retrieved December 30, 2007.
  81. Zyga, Lisa (May 22, 2007). "Scientists demonstrate quantum state exchange between light and matter". PhysOrg.com. Archived from the original on March 7, 2008. Retrieved December 30, 2007.
  82. Dutt, M. V.; Childress, L.; Jiang, L.; Togan, E.; Maze, J.; Jelezko, F.; Zibrov, A. S.; Hemmer, P. R; Lukin, M. D. (June 1, 2007). "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond". Science. 316 (5829): 1312–1316. Bibcode:2007Sci...316.....D. doi:10.1126/science.1139831. PMID   17540898. S2CID   20697722.
  83. Plantenberg, J. H.; De Groot, P. C.; Harmans, C. J. P. M.; Mooij, J. E. (June 14, 2007). "Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits". Nature. 447 (7146): 836–839. Bibcode:2007Natur.447..836P. doi:10.1038/nature05896. PMID   17568742. S2CID   3054763.
  84. Inman, Mason (June 17, 2007). "Atom trap is a step towards a quantum computer". New Scientist . Retrieved December 30, 2007.
  85. "Nanotechnology and Emerging Technologies News from Nanowerk". www.nanowerk.com. Retrieved July 5, 2023.
  86. "Discovery Of 'Hidden' Quantum Order Improves Prospects For Quantum Super Computers". Science Daily . July 27, 2007. Retrieved December 30, 2007.
  87. Marquit, Miranda (July 23, 2007). "Indium arsenide may provide clues to quantum information processing". PhysOrg.com. Archived from the original on September 26, 2007. Retrieved December 30, 2007.
  88. "Thousands of Atoms Swap 'Spins' with Partners in Quantum Square Dance". National Institute of Standards and Technology . July 25, 2007. Archived from the original on December 18, 2007. Retrieved December 30, 2007.
  89. Zyga, Lisa (August 15, 2007). "Ultrafast quantum computer uses optically controlled electrons". PhysOrg.com. Archived from the original on January 2, 2008. Retrieved December 30, 2007.
  90. Bush, Steve (August 15, 2007). "Research points way to qubits on standard chips". Electronics Weekly . Retrieved December 30, 2007.
  91. "Computing Breakthrough Could Elevate Security To Unprecedented Levels". ScienceDaily. August 17, 2007. Retrieved December 30, 2007.
  92. Battersby, Stephen (August 21, 2007). "Blueprints drawn up for quantum computer RAM". New Scientist . Retrieved December 30, 2007.
  93. "Photon-transistors for the supercomputers of the future". PhysOrg.com. August 26, 2007. Archived from the original on January 1, 2008. Retrieved December 30, 2007.
  94. "Physicists establish "spooky" quantum communication". University of Michigan. September 5, 2007. Archived from the original on December 28, 2007. Retrieved December 30, 2007.
  95. "Qubits poised to reveal our secrets". huliq.com. September 13, 2007. Retrieved December 30, 2007.
  96. Das, Saswato (September 26, 2007). "Quantum chip rides on superconducting bus". New Scientist . Retrieved December 30, 2007.
  97. "Superconducting Quantum Computing Cable Created". ScienceDaily . September 27, 2007. Retrieved December 30, 2007.
  98. Bush, Steve (October 11, 2007). "Qubit transmission signals quantum computing advance". Electronics Weekly . Archived from the original on October 12, 2007. Retrieved December 30, 2007.
  99. Hodgin, Rick C. (October 8, 2007). "New material breakthrough brings quantum computers one step closer". TG Daily. Archived from the original on December 12, 2007. Retrieved December 30, 2007.
  100. "Single electron-spin memory with a semiconductor quantum dot". Optics.org. October 19, 2007. Retrieved December 30, 2007.
  101. Battersby, Stephen (November 7, 2007). "'Light trap' is a step towards quantum memory". New Scientist . Retrieved December 30, 2007.
  102. "World's First 28 qubit Quantum Computer Demonstrated Online at Supercomputing 2007 Conference". Nanowerk.com. November 12, 2007. Archived from the original on August 30, 2018. Retrieved December 30, 2007.
  103. "Desktop device generates and traps rare ultracold molecules". PhysOrg.com. December 12, 2007. Archived from the original on December 15, 2007. Retrieved December 31, 2007.
  104. Luke, Kim (December 19, 2007). "U of T scientists make quantum computing leap Research is step toward building first quantum computers". University of Toronto. Archived from the original on December 28, 2007. Retrieved December 31, 2007.
  105. Trauzettel, Björn; Bulaev, Denis V.; Loss, Daniel; Burkard, Guido (February 18, 2007). "Spin qubits in graphene quantum dots". Nature Physics. 3 (3): 192–196. arXiv: cond-mat/0611252 . Bibcode:2007NatPh...3..192T. doi:10.1038/nphys544. S2CID   119431314.
  106. Harrow, Aram W.; Hassidim, Avinatan; Lloyd, Seth (2008). "Quantum algorithm for solving linear systems of equations". Physical Review Letters. 103 (15): 150502. arXiv: 0811.3171 . Bibcode:2009PhRvL.103o0502H. doi:10.1103/PhysRevLett.103.150502. PMID   19905613. S2CID   5187993.
  107. Marquit, Miranda (January 15, 2008). "Graphene quantum dot may solve some quantum computing problems". Archived from the original on January 17, 2008. Retrieved January 16, 2008.
  108. "Scientists succeed in storing quantum bit". EE Times Europe. January 25, 2008. Retrieved February 5, 2008.
  109. Zyga, Lisa (February 26, 2008). "Physicists demonstrate qubit-qutrit entanglement". PhysOrg.com. Archived from the original on February 29, 2008. Retrieved February 27, 2008.
  110. "Analog logic for quantum computing". ScienceDaily. February 26, 2008. Retrieved February 27, 2008.
  111. Kotala, Zenaida Gonzalez (March 5, 2008). "Future 'quantum computers' will offer increased efficiency... and risks". Eurekalert.org. Retrieved March 5, 2008.
  112. Kurzweil, Ray (March 6, 2008). "Entangled memory is a first" . Retrieved March 8, 2008.
  113. Fryer, Joann (March 27, 2008). "Silicon chips for optical quantum technologies". Eurekalert.org. Retrieved March 29, 2008.
  114. Kurzweil, Ray (April 7, 2008). "Qutrit breakthrough brings quantum computers closer" . Retrieved April 7, 2008.
  115. Greene, Kate (April 15, 2008). "Toward a quantum internet". Technology Review. Retrieved April 16, 2008.
  116. "Scientists discover exotic quantum state of matter". Princeton University. April 24, 2008. Archived from the original on April 30, 2008. Retrieved April 29, 2008.
  117. Dumé, Belle (May 23, 2008). "Spin states endure in quantum dot". Physics World. Archived from the original on May 29, 2008. Retrieved June 3, 2008.
  118. Lee, Chris (May 27, 2008). "Molecular magnets in soap bubbles could lead to quantum RAM". ARSTechnica. Retrieved June 3, 2008.
  119. Weizmann Institute of Science (June 2, 2008). "Scientists find new 'quasiparticles'". PhysOrg.com. Retrieved June 3, 2008.
  120. Zyga, Lisa (June 23, 2008). "Physicists Store Images in Vapor". PhysOrg.com. Archived from the original on September 15, 2008. Retrieved June 26, 2008.
  121. "Physicists Produce Quantum-Entangled Images". PhysOrg.com. June 25, 2008. Archived from the original on August 29, 2008. Retrieved June 26, 2008.
  122. Tally, Steve (June 26, 2008). "Quantum computing breakthrough arises from unknown molecule". Purdue University. Archived from the original on February 2, 2019. Retrieved June 28, 2008.
  123. Rugani, Lauren (July 17, 2008). "Quantum Leap". Technology Review. Retrieved July 17, 2008.
  124. "Breakthrough In Quantum Mechanics: Superconducting Electronic Circuit Pumps Microwave Photons". ScienceDaily. August 5, 2008. Retrieved August 6, 2008.
  125. "New probe could aid quantum computing". PhysOrg.com. September 3, 2008. Archived from the original on September 5, 2008. Retrieved September 6, 2008.
  126. "Novel Process Promises To Kick-start Quantum Technology Sector". ScienceDaily. September 25, 2008. Retrieved October 16, 2008.
  127. O'Brien, Jeremy L. (September 22, 2008). "Quantum computing over the rainbow" . Retrieved October 16, 2008.
  128. "Relationships Between Quantum Dots – Stability and Reproduction". Science Blog. October 20, 2008. Archived from the original on October 22, 2008. Retrieved October 20, 2008.
  129. Schultz, Steven (October 22, 2008). "Memoirs of a qubit: Hybrid memory solves key problem for quantum computing". Eurekalert.com. Retrieved October 23, 2008.
  130. "World's Smallest Storage Space ... the Nucleus of an Atom". National Science Foundation News. October 23, 2008. Retrieved October 27, 2008.
  131. Stober, Dan (November 20, 2008). "Stanford: Quantum computing spins closer". Eurekalert.com. Retrieved November 22, 2008.
  132. Marquit, Miranda (December 5, 2008). "Quantum computing: Entanglement may not be necessary". PhysOrg.com. Archived from the original on December 8, 2008. Retrieved December 9, 2008.
  133. "Dwave System's 128 qubit chip has been made". Next Big Future. December 19, 2008. Archived from the original on December 23, 2008. Retrieved December 20, 2008.
  134. "Three Times Higher Carbon 12 Purity for Synthetic Diamond Enables Better Quantum Computing". Next Big Future. April 7, 2009. Archived from the original on April 11, 2009. Retrieved May 19, 2009.
  135. Greene, Kate (April 23, 2009). "Extending the Life of Quantum Bits". Technology Review. Retrieved June 1, 2020.
  136. "Researchers make breakthrough in the quantum control of light". PhysOrg.com. May 29, 2009. Archived from the original on January 31, 2013. Retrieved May 30, 2009.
  137. "Physicists demonstrate quantum entanglement in mechanical system". PhysOrg.com. June 3, 2009. Archived from the original on January 31, 2013. Retrieved June 13, 2009.
  138. Moore, Nicole Casai (June 24, 2009). "Lasers can lengthen quantum bit memory by 1,000 times". Eurekalert.com. Retrieved June 27, 2009.
  139. "First Electronic Quantum Processor Created". ScienceDaily. June 29, 2009. Retrieved June 29, 2009.
  140. Lu, C. Y.; Gao, W. B.; Gühne, O.; Zhou, X. Q.; Chen, Z. B.; Pan, J. W. (2009). "Demonstrating Anyonic Fractional Statistics with a Six-Qubit Quantum Simulator". Physical Review Letters. 102 (3): 030502. arXiv: 0710.0278 . Bibcode:2009PhRvL.102c0502L. doi:10.1103/PhysRevLett.102.030502. PMID   19257336. S2CID   11788852.
  141. Borghino, Dario (July 6, 2009). "Quantum computer closer: Optical transistor made from single molecule". Gizmag. Retrieved July 8, 2009.
  142. Johnson, R. Colin (July 8, 2009). "NIST advances quantum computing". EE Times. Retrieved July 9, 2009.
  143. Greene, Kate (August 7, 2009). "Scaling Up a Quantum Computer". Technology Review. Retrieved August 8, 2009.
  144. Devitt, S. J.; Fowler, A. G.; Stephens, A. M.; Greentree, A. D.; Hollenberg, L. C. L.; Munro, W. J.; Nemoto, K. (August 11, 2009). "Architectural design for a topological cluster state quantum computer". New Journal of Physics. 11 (83032): 1221. arXiv: 0808.1782 . Bibcode:2009NJPh...11h3032D. doi:10.1088/1367-2630/11/8/083032. S2CID   56195929.
  145. Home, J. P.; Hanneke, D.; Jost, J. D.; Amini, J. M.; Leibfried, D.; Wineland, D. J. (September 4, 2009). "Complete Methods Set for Scalable Ion Trap Quantum Information Processing". Science. 325 (5945): 1227–1230. arXiv: 0907.1865 . Bibcode:2009Sci...325.1227H. doi:10.1126/science.1177077. PMID   19661380. S2CID   24468918.
  146. Politi, A.; Matthews, J. C.; O'Brien, J. L. (2009). "Shor's Quantum Factoring Algorithm on a Photonic Chip". Science. 325 (5945): 1221. arXiv: 0911.1242 . Bibcode:2009Sci...325.1221P. doi:10.1126/science.1173731. PMID   19729649. S2CID   17259222.
  147. Wesenberg, J. H.; Ardavan, A.; Briggs, G. A. D.; Morton, J. J. L.; Schoelkopf, R. J.; Schuster, D. I.; Mølmer, K. (2009). "Quantum Computing with an Electron Spin Ensemble". Physical Review Letters. 103 (7): 070502. arXiv: 0903.3506 . Bibcode:2009PhRvL.103g0502W. doi:10.1103/PhysRevLett.103.070502. PMID   19792625. S2CID   6990125.
  148. Barras, Colin (September 25, 2009). "Photon 'machine gun' could power quantum computers". New Scientist . Retrieved September 26, 2009.
  149. "First universal programmable quantum computer unveiled". New Scientist . November 15, 2009. Retrieved November 16, 2009.
  150. "UCSB physicists move 1 step closer to quantum computing". ScienceBlog. November 20, 2009. Archived from the original on November 23, 2009. Retrieved November 23, 2009.
  151. Hsu, Jeremy (December 11, 2009). "Google Demonstrates Quantum Algorithm Promising Superfast Search" . Retrieved December 14, 2009.
  152. Harris, R.; Brito, F.; Berkley, A. J.; Johansson, J.; Johnson, M. W.; Lanting, T.; Bunyk, P.; Ladizinsky, E.; Bumble, B.; Fung, A.; Kaul, A.; Kleinsasser, A.; Han, S. (2009). "Synchronization of multiple coupled rf-SQUID flux qubits". New Journal of Physics. 11 (12): 123022. arXiv: 0903.1884 . Bibcode:2009NJPh...11l3022H. doi:10.1088/1367-2630/11/12/123022. S2CID   54065717.
  153. Monz, T.; Kim, K.; Villar, A. S.; Schindler, P.; Chwalla, M.; Riebe, M.; Roos, C. F.; Häffner, H.; Hänsel, W.; Hennrich, M.; Blatt, R (2009). "Realization of Universal Ion Trap Quantum Computation with Decoherence Free Qubits". Physical Review Letters. 103 (20): 200503. arXiv: 0909.3715 . Bibcode:2009PhRvL.103t0503M. doi:10.1103/PhysRevLett.103.200503. PMID   20365970. S2CID   7632319.
  154. "A decade of Physics World breakthroughs: 2009 – the first quantum computer". Physics World. November 29, 2019.
  155. "Making Light of Ion Traps". arXiv blog. January 20, 2010. Retrieved January 21, 2010.
  156. Petit, Charles (January 28, 2010). "Quantum Computer Simulates Hydrogen Molecule Just Right". Wired. Retrieved February 5, 2010.
  157. Hardesty, Larry (February 4, 2010). "First germanium laser brings us closer to 'optical computers'". Archived from the original on December 24, 2011. Retrieved February 4, 2010.
  158. "Quantum Computing Leap Forward: Altering a Lone Electron Without Disturbing Its Neighbors". Science Daily. February 6, 2010. Retrieved February 6, 2010.
  159. Palmer, Jason (March 17, 2010). "Team's quantum object is biggest by factor of billions". BBC News. Retrieved March 20, 2010.
  160. University of Cambridge. "Cambridge discovery could pave the way for quantum computing" . Retrieved March 18, 2010.[ dead link ]
  161. "Racetrack Ion Trap Is a Contender in Quantum Computing Quest". ScienceDaily. April 1, 2010. Retrieved April 3, 2010.
  162. Rice University (April 21, 2010). "Bizarre matter could find use in quantum computers" . Retrieved August 29, 2018.
  163. Vetsch, E.; et al. (May 27, 2010). "German physicists develop a quantum interface between light and atoms". Archived from the original on December 19, 2011. Retrieved April 22, 2010.
  164. Dumé, Isabelle (June 5, 2010). "Entangling photons with electricity". Physics World. Retrieved July 21, 2023.
  165. Munro, W. J.; Harrison, K. A.; Stephens, A. M.; Devitt, S. J.; Nemoto, K. (August 29, 2010). "From quantum multiplexing to high-performance quantum networking". Nature Photonics. 4 (11): 792–796. arXiv: 0910.4038 . Bibcode:2010NaPho...4..792M. doi:10.1038/nphoton.2010.213. S2CID   119243884.{{cite journal}}: CS1 maint: date and year (link)
  166. Kurzweil accelerating intelligence (September 17, 2010). "Two-photon optical chip enables more complex quantum computing" . Retrieved September 17, 2010.
  167. "Toward a Useful Quantum Computer: Researchers Design and test Microfabricated Planar Ion Traps". ScienceDaily. May 28, 2010. Retrieved September 20, 2010.
  168. "Quantum Future: Designing and Testing Microfabricated Planar Ion Traps". Georgia Tech Research Institute . Retrieved September 20, 2010.
  169. Aaronson, Scott; Arkhipov, Alex (2011). "The Computational Complexity of Linear Optics". Proceedings of the 43rd annual ACM symposium on Theory of computing – STOC '11. 43rd Annual ACM Symposium on Theory of Computing. New York, New York, USA: ACM Press. pp. 333–342. arXiv: 1011.3245 . doi:10.1145/1993636.1993682. ISBN   978-1-4503-0691-1.
  170. TU Delft (December 23, 2010). "TU scientists in Nature: Better control of building blocks for quantum computer". Archived from the original on December 24, 2010. Retrieved December 26, 2010.
  171. Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L. W; Itoh, Kohei M; Morton, John J. L (2011). "Entanglement in a solid-state spin ensemble". Nature. 470 (7332): 69–72. arXiv: 1010.0107 . Bibcode:2011Natur.470...69S. doi:10.1038/nature09696. PMID   21248751. S2CID   4322097.
  172. University of California, Santa Barbara, Office of Public Affairs (February 14, 2011). "International Team of Scientists Says It's High 'Noon' for Microwave Photons" . Retrieved February 16, 2011.{{cite news}}: CS1 maint: multiple names: authors list (link)
  173. Kurzweil Accelerating Intelligence (February 24, 2011). "'Quantum antennas' enable exchange of quantum information between two memory cells" . Retrieved February 24, 2011.
  174. Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L (2011). "Multimode quantum interference of photons in multiport integrated devices". Nature Communications. 2: 224. arXiv: 1007.1372 . Bibcode:2011NatCo...2..224P. doi:10.1038/ncomms1228. PMC   3072100 . PMID   21364563.
  175. KFC (March 7, 2011). "New Magnetic Resonance Technique Could Revolutionise Quantum Computing" . Retrieved June 1, 2020.
  176. Weitenberg, Christof; Endres, Manuel; Sherson, Jacob F.; Cheneau, Marc; Schauß, Peter; Fukuhara, Takeshi; Bloch, Immanuel & Kuhr, Stefan (March 17, 2011). "A Quantum Pen for Single Atoms". Archived from the original on March 18, 2011. Retrieved March 19, 2011.
  177. "German research brings us one step closer to quantum computing". Cordisnews. March 21, 2011. Archived from the original on October 11, 2012. Retrieved March 22, 2011.
  178. Monz, T.; Schindler, P.; Barreiro, J. T.; Chwalla, M.; Nigg, D.; Coish, W. A.; Harlander, M.; Hänsel, W.; Hennrich, M.; Blatt, R. (2011). "14-Qubit Entanglement: Creation and Coherence". Physical Review Letters . 106 (13): 130506. arXiv: 1009.6126 . Bibcode:2011PhRvL.106m0506M. doi:10.1103/PhysRevLett.106.130506. PMID   21517367. S2CID   8155660.
  179. "Quantum-computing firm opens the box". Physicsworld.com. May 12, 2011. Archived from the original on May 15, 2011. Retrieved May 17, 2011.
  180. "Repetitive error correction demonstrated in a quantum processor". physorg.com. May 26, 2011. Archived from the original on January 7, 2012. Retrieved May 26, 2011.
  181. University of California, Santa Barbara (June 27, 2011). "International Team Demonstrates Subatomic Quantum Memory in Diamond" . Retrieved June 29, 2011.
  182. "Quantum computing breakthrough in the creation of massive numbers of entangled qubits". Nanowerk News. July 15, 2011. Retrieved July 18, 2011.
  183. "Scientists take the next major step toward quantum computing". Nanowerk News. July 20, 2011. Retrieved July 20, 2011.
  184. "Dramatic simplification paves the way for building a quantum computer". Nanowerk News. August 2, 2011. Retrieved August 3, 2011.
  185. Ospelkaus, C.; Warring, U.; Colombe, Y.; Brown, K. R.; Amini, J. M.; Leibfried, D.; Wineland, D. J. (2011). "Microwave quantum logic gates for trapped ions". Nature. 476 (7359): 181–184. arXiv: 1104.3573 . Bibcode:2011Natur.476..181O. doi:10.1038/nature10290. PMID   21833084. S2CID   2902510.
  186. Ost, Laura (August 30, 2011). "NIST Achieves Record-Low Error Rate for Quantum Information Processing with One Qubit" . Retrieved September 3, 2011.
  187. Mariantoni, M.; Wang, H.; Yamamoto, T.; Neeley, M.; Bialczak, R. C.; Chen, Y.; Lenander, M.; Lucero, E.; O'Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yin, Y.; Zhao, J.; Korotkov, A. N.; Cleland, A. N; Martinis, J. M (September 1, 2011). "Implementing the Quantum von Neumann Architecture with Superconducting Circuits". Science. 334 (6052): 61–65. arXiv: 1109.3743 . Bibcode:2011Sci...334...61M. doi:10.1126/science.1208517. PMID   21885732. S2CID   11483576.{{cite journal}}: CS1 maint: date and year (link)
  188. Jablonski, Chris (October 4, 2011). "One step closer to quantum computers". ZDnet. Retrieved August 29, 2018.
  189. Moskowitz, Clara; Walmsley, Ian; Sprague, Michael (December 2, 2011). "Two Diamonds Linked by Strange Quantum Entanglement" . Retrieved December 2, 2011.
  190. Bian, Z.; Chudak, F.; MacReady, W. G.; Clark, L.; Gaitan, F. (2013). "Experimental determination of Ramsey numbers with quantum annealing". Physical Review Letters. 111 (13): 130505. arXiv: 1201.1842 . Bibcode:2013PhRvL.111m0505B. doi:10.1103/PhysRevLett.111.130505. PMID   24116761. S2CID   1303361.
  191. Fuechsle, M.; Miwa, J. A.; Mahapatra, S.; Ryu, H.; Lee, S.; Warschkow, O.; Hollenberg, L. C.; Klimeck, G.; Simmons, M. Y. (February 19, 2012). "A single-atom transistor". Nature Nanotechnology. 7 (4): 242–246. Bibcode:2012NatNa...7..242F. doi:10.1038/nnano.2012.21. PMID   22343383. S2CID   14952278.
  192. Markoff, John (February 19, 2012). "Physicists Create a Working Transistor From a Single Atom". The New York Times. Retrieved February 19, 2012.
  193. Grotz, Bernhard; Hauf, Moritz V.; Dankerl, Markus; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Wrachtrup, Jörg; Stutzmann, Martin; Reinhard, Friedemann; Garrido, Jose A. (2012). "Charge state manipulation of qubits in diamond". Nature Communications. 3: 729. Bibcode:2012NatCo...3..729G. doi:10.1038/ncomms1729. PMC   3316888 . PMID   22395620.
  194. Britton, J. W.; Sawyer, B. C.; Keith, A. C.; Wang, C. C.; Freericks, J. K.; Uys, H.; Biercuk, M. J.; Bollinger, J. J. (April 26, 2012). "Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins". Nature. 484 (7395): 489–492. arXiv: 1204.5789 . Bibcode:2012Natur.484..489B. doi:10.1038/nature10981. PMID   22538611. S2CID   4370334.
  195. Sherriff, Lucy. "300 atom quantum simulator smashes qubit record" . Retrieved February 9, 2015.
  196. Yao, Xing-Can; Wang, Tian-Xiong; Chen, Hao-Ze; Gao, Wei-Bo; Fowler, Austin G; Raussendorf, Robert; Chen, Zeng-Bing; Liu, Nai-Le; Lu, Chao-Yang; Deng, You-Jin; Chen, Yu-Ao; Pan, Jian-Wei (2012). "Experimental demonstration of topological error correction". Nature. 482 (7386): 489–494. arXiv: 0905.1542 . Bibcode:2012Natur.482..489Y. doi:10.1038/nature10770. PMID   22358838. S2CID   4307662.
  197. 1QBit. "1QBit Website".{{cite news}}: CS1 maint: numeric names: authors list (link)
  198. Munro, W. J.; Stephens, A. M.; Devitt, S. J.; Harrison, K. A.; Nemoto, K. (October 14, 2012). "Quantum communication without the necessity of quantum memories". Nature Photonics. 6 (11): 777–781. arXiv: 1306.4137 . Bibcode:2012NaPho...6..777M. doi:10.1038/nphoton.2012.243. S2CID   5056130.{{cite journal}}: CS1 maint: date and year (link)
  199. Maurer, P. C.; Kucsko, G.; Latta, C.; Jiang, L.; Yao, N. Y.; Bennett, S. D.; Pastawski, F.; Hunger, D.; Chisholm, N.; Markham, M.; Twitchen, D. J.; Cirac, J. I.; Lukin, M. D. (June 8, 2012). "Room-Temperature Quantum Bit Memory Exceeding One Second". Science (Submitted manuscript). 336 (6086): 1283–1286. Bibcode:2012Sci...336.1283M. doi:10.1126/science.1220513. PMID   22679092. S2CID   2684102.
  200. Peckham, Matt (July 6, 2012). "Quantum Computing at Room Temperature – Now a Reality". Magazine/Periodical. Time Magazine (Techland) Time Inc. p. 1. Retrieved August 5, 2012.
  201. Koh, Dax Enshan; Hall, Michael J. W.; Setiawan; Pope, James E.; Marletto, Chiara; Kay, Alastair; Scarani, Valerio; Ekert, Artur (2012). "Effects of Reduced Measurement Independence on Bell-Based Randomness Expansion". Physical Review Letters. 109 (16): 160404. arXiv: 1202.3571 . Bibcode:2012PhRvL.109p0404K. doi:10.1103/PhysRevLett.109.160404. PMID   23350071. S2CID   18935137.
  202. Horsman, C.; Fowler, A. G.; Devitt, S. J.; Van Meter, R. (December 7, 2012). "Surface code quantum computing by lattice surgery". New J. Phys. 14 (12): 123011. arXiv: 1111.4022 . Bibcode:2012NJPh...14l3011H. doi:10.1088/1367-2630/14/12/123011. S2CID   119212756.{{cite journal}}: CS1 maint: date and year (link)
  203. Kastrenakes, Jacob (November 14, 2013). "Researchers smash through quantum computer storage record". Webzine. The Verge. Retrieved November 20, 2013.
  204. "Quantum Computer Breakthrough 2013". November 24, 2013. Archived from the original on October 2, 2018. Retrieved October 2, 2018.
  205. Devitt, S. J.; Stephens, A. M.; Munro, W. J.; Nemoto, K. (October 10, 2013). "Requirements for fault-tolerant factoring on an atom-optics quantum computer". Nature Communications. 4: 2524. arXiv: 1212.4934 . Bibcode:2013NatCo...4.2524D. doi:10.1038/ncomms3524. PMID   24088785. S2CID   7229103.{{cite journal}}: CS1 maint: date and year (link)
  206. "Penetrating Hard Targets project". Archived from the original on August 30, 2017. Retrieved September 16, 2017.
  207. "NSA seeks to develop quantum computer to crack nearly every kind of encryption « Kurzweil".
  208. NSA seeks to build quantum computer that could crack most types of encryption – Washington Post.
  209. Dockterman, Eliana (January 2, 2014). "The NSA Is Building a Computer to Crack Almost Any Code". Time via nation.time.com.
  210. Nemoto, K.; Trupke, M.; Devitt, S. J.; Stephens, A. M.; Scharfenberger, B.; Buczak, K.; Nobauer, T.; Everitt, M. S.; Schmiedmayer, J.; Munro, W. J. (August 4, 2014). "Photonic architecture for scalable quantum information processing in diamond". Physical Review X. 4 (3): 031022. arXiv: 1309.4277 . Bibcode:2014PhRvX...4c1022N. doi:10.1103/PhysRevX.4.031022. S2CID   118418371.{{cite journal}}: CS1 maint: date and year (link)
  211. Nigg, D.; Müller, M.; Martinez, M. A.; Schindler, P.; Hennrich, M.; Monz, T.; Martin-Delgado, M. A.; Blatt, R. (July 18, 2014). "Quantum computations on a topologically encoded qubit". Science . 345 (6194): 302–305. arXiv: 1403.5426 . Bibcode:2014Sci...345..302N. doi:10.1126/science.1253742. PMID   24925911. S2CID   9677048.
  212. Markoff, John (May 29, 2014). "Scientists Report Finding Reliable Way to Teleport Data". The New York Times . Retrieved May 29, 2014.
  213. Pfaff, W.; Hensen, B. J.; Bernien, H.; Van Dam, S. B.; Blok, M. S.; Taminiau, T. H.; Tiggelman, M. J.; Schouten, R. N.; Markham, M.; Twitchen, D. J.; Hanson, R. (May 29, 2014). "Unconditional quantum teleportation between distant solid-state quantum bits". Science . 345 (6196): 532–535. arXiv: 1404.4369 . Bibcode:2014Sci...345..532P. doi:10.1126/science.1253512. PMID   25082696. S2CID   2190249.
  214. Zhong, Manjin; Hedges, Morgan P.; Ahlefeldt, Rose L.; Bartholomew, John G.; Beavan, Sarah E.; Wittig, Sven M.; Longdell, Jevon J.; Sellars, Matthew J. (2015). "Optically addressable nuclear spins in a solid with a six-hour coherence time". Nature. 517 (7533): 177–180. Bibcode:2015Natur.517..177Z. doi:10.1038/nature14025. PMID   25567283. S2CID   205241727.
  215. "Breakthrough opens door to affordable quantum computers". April 13, 2015. Retrieved April 16, 2015.
  216. Córcoles, A. D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M. (2015). "Demonstration of a quantum error detection code using a square lattice of four superconducting qubits". Nature Communications. 6: 6979. arXiv: 1410.6419 . Bibcode:2015NatCo...6.6979C. doi:10.1038/ncomms7979. PMC   4421819 . PMID   25923200.
  217. "D-Wave Systems Inc., the world's first quantum computing company, today announced that it has broken the 1000 qubit barrier". June 22, 2015. Archived from the original on January 15, 2018. Retrieved June 22, 2015.
  218. October 6, 2015 "Crucial hurdle overcome in quantum computing" . Retrieved October 6, 2015.
  219. Monz, T.; Nigg, D.; Martinez, E. A.; Brandl, M. F.; Schindler, P.; Rines, R.; Wang, S. X.; Chuang, I. L.; Blatt, R.; et al. (March 4, 2016). "Realization of a scalable Shor algorithm". Science. 351 (6277): 1068–1070. arXiv: 1507.08852 . Bibcode:2016Sci...351.1068M. doi:10.1126/science.aad9480. PMID   26941315. S2CID   17426142.
  220. Devitt, S. J. (September 29, 2016). "Performing quantum computing experiments in the cloud". Physical Review A. 94 (3): 032329. arXiv: 1605.05709 . Bibcode:2016PhRvA..94c2329D. doi:10.1103/PhysRevA.94.032329. S2CID   119217150.{{cite journal}}: CS1 maint: date and year (link)
  221. Alsina, D.; Latorre, J. I. (2016). "Experimental test of Mermin inequalities on a five-qubit quantum computer". Physical Review A. 94 (1): 012314. arXiv: 1605.04220 . Bibcode:2016PhRvA..94a2314A. doi:10.1103/PhysRevA.94.012314. S2CID   119189277.
  222. o'Malley, P. J. J.; Babbush, R.; Kivlichan, I. D.; Romero, J.; McClean, J. R.; Barends, R.; Kelly, J.; Roushan, P.; Tranter, A.; Ding, N.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A. G; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J. Y; Neeley, M; Neill, C; Quintana, C; Sank, D; Vainsencher, A; Wenner, J; White, T. C; Coveney, P. V; Love, P. J; Neven, H; et al. (July 18, 2016). "Scalable Quantum Simulation of Molecular Energies". Physical Review X. 6 (3): 031007. arXiv: 1512.06860 . Bibcode:2016PhRvX...6c1007O. doi:10.1103/PhysRevX.6.031007. S2CID   4884151.
  223. Devitt, S. J.; Greentree, A. D.; Stephens, A. M.; Van Meter, R. (November 2, 2016). "High-speed quantum networking by ship". Scientific Reports. 6: 36163. arXiv: 1605.05709 . Bibcode:2016NatSR...636163D. doi:10.1038/srep36163. PMC   5090252 . PMID   27805001.{{cite journal}}: CS1 maint: date and year (link)
  224. "D-Wave Announces D-Wave 2000Q Quantum Computer and First System Order | D-Wave Systems". www.dwavesys.com. Archived from the original on January 27, 2017. Retrieved January 26, 2017.
  225. Lekitsch, B; Weidt, S; Fowler, A. G; Mølmer, K; Devitt, S. J; Wunderlich, C; Hensinger, W. K (February 1, 2017). "Blueprint for a microwave trapped ion quantum computer". Science Advances. 3 (2): e1601540. arXiv: 1508.00420 . Bibcode:2017SciA....3E1540L. doi:10.1126/sciadv.1601540. PMC   5287699 . PMID   28164154.
  226. Meredith Rutland Bauer (May 17, 2017). "IBM Just Made a 17 Qubit Quantum Processor, Its Most Powerful One Yet". Motherboard.
  227. "Qudits: The Real Future of Quantum Computing?". IEEE Spectrum. June 28, 2017. Retrieved June 29, 2017.
  228. "Microsoft makes play for next wave of computing with quantum computing toolkit". arstechnica.com. September 25, 2017. Retrieved October 5, 2017.
  229. "IBM Raises the Bar with a 50-Qubit Quantum Computer". MIT Technology Review. Retrieved December 13, 2017.
  230. Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing (August 9, 2017). "Ground-to-satellite quantum teleportation". Nature. 549 (7670): 70–73. arXiv: 1707.00934 . Bibcode:2017Natur.549...70R. doi:10.1038/nature23675. ISSN   1476-4687. PMID   28825708. S2CID   4468803.
  231. Preskill, John (August 6, 2018). "Quantum Computing in the NISQ era and beyond". Quantum. 2: 79. arXiv: 1801.00862 . Bibcode:2018Quant...2...79P. doi:10.22331/q-2018-08-06-79. ISSN   2521-327X.
  232. Hignett, Katherine (February 16, 2018). "Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution". Newsweek . Retrieved February 17, 2018.
  233. Liang, Q. Y; Venkatramani, A. V; Cantu, S. H; Nicholson, T. L; Gullans, M. J; Gorshkov, A. V; Thompson, J. D; Chin, C; Lukin, M. D; Vuletić, V (February 16, 2018). "Observation of three-photon bound states in a quantum nonlinear medium". Science . 359 (6377): 783–786. arXiv: 1709.01478 . Bibcode:2018Sci...359..783L. doi:10.1126/science.aao7293. PMC   6467536 . PMID   29449489.
  234. "Scientists make major quantum computing breakthrough" . Independent.co.uk . March 2018. Archived from the original on May 7, 2022.
  235. Giles, Martin (February 15, 2018). "Old-fashioned silicon might be the key to building ubiquitous quantum computers". MIT Technology Review. Retrieved July 5, 2018.
  236. Emily Conover (March 5, 2018). "Google moves toward quantum supremacy with 72-qubit computer". Science News. Retrieved August 28, 2018.
  237. Forrest, Conner (June 12, 2018). "Why Intel's smallest spin qubit chip could be a turning point in quantum computing". TechRepublic. Retrieved July 12, 2018.
  238. Hsu, Jeremy (January 9, 2018). "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". Institute of Electrical and Electronics Engineers . Retrieved July 5, 2018.
  239. Nagata, K; Kuramitani, K; Sekiguchi, Y; Kosaka, H (August 13, 2018). "Universal holonomic quantum gates over geometric spin qubits with polarised microwaves". Nature Communications . 9 (3227): 3227. Bibcode:2018NatCo...9.3227N. doi:10.1038/s41467-018-05664-w. PMC   6089953 . PMID   30104616.
  240. Lenzini, Francesco (December 7, 2018). "Integrated photonic platform for quantum information with continuous variables". Science Advances. 4 (12): eaat9331. arXiv: 1804.07435 . Bibcode:2018SciA....4.9331L. doi: 10.1126/sciadv.aat9331 . PMC   6286167 . PMID   30539143.
  241. "Ion-based commercial quantum computer is a first". Physics World. December 17, 2018.
  242. "IonQ".
  243. 115th Congress (2018) (June 26, 2018). "H.R. 6227 (115th)". Legislation. GovTrack.us. Retrieved February 11, 2019. National Quantum Initiative Act{{cite web}}: CS1 maint: numeric names: authors list (link)
  244. "President Trump has signed a $1.2 billon law to boost US quantum tech". MIT Technology Review. Retrieved February 11, 2019.
  245. "US National Quantum Initiative Act passed unanimously". The Stack. December 18, 2018. Retrieved February 11, 2019.
  246. Aron, Jacob (January 8, 2019). "IBM unveils its first commercial quantum computer". New Scientist. Retrieved January 8, 2019.
  247. "IBM unveils its first commercial quantum computer". TechCrunch. January 8, 2019. Retrieved February 18, 2019.
  248. Kokail, C; Maier, C; Van Bijnen, R; Brydges, T; Joshi, M. K; Jurcevic, P; Muschik, C. A; Silvi, P; Blatt, R; Roos, C; Zoller, P (May 15, 2019). "Self-verifying variational quantum simulation of lattice models". Science . 569 (7756): 355–360. arXiv: 1810.03421 . Bibcode:2019Natur.569..355K. doi:10.1038/s41586-019-1177-4. PMID   31092942. S2CID   53595106.
  249. UNSW Media (May 23, 2019). "'Noise-cancelling headphones' for quantum computers: international collaboration launched". UNSW Newsroom. University of New South Wales . Retrieved April 16, 2022.
  250. "Cancelling quantum noise". May 23, 2019.
  251. Unden, T.; Louzon, D.; Zwolak, M.; Zurek, W. H.; Jelezko, F. (October 1, 2019). "Revealing the Emergence of Classicality Using Nitrogen-Vacancy Centers". Physical Review Letters . 123 (140402): 140402. arXiv: 1809.10456 . Bibcode:2019PhRvL.123n0402U. doi:10.1103/PhysRevLett.123.140402. PMC   7003699 . PMID   31702205.
  252. Cho, A. (September 13, 2019). "Quantum Darwinism seen in diamond traps". Science . 365 (6458): 1070. Bibcode:2019Sci...365.1070C. doi:10.1126/science.365.6458.1070. PMID   31515367. S2CID   202567042.
  253. "Google may have taken a step towards quantum computing 'supremacy' (updated)". Engadget. September 23, 2019. Retrieved September 24, 2019.
  254. Porter, Jon (September 23, 2019). "Google may have just ushered in an era of 'quantum supremacy'". The Verge. Retrieved September 24, 2019.
  255. Murgia, Waters, Madhumita, Richard (September 20, 2019). "Google claims to have reached quantum supremacy" . Financial Times. Archived from the original on December 10, 2022. Retrieved September 24, 2019.{{cite web}}: CS1 maint: multiple names: authors list (link)
  256. "Google Builds Circuit to Solve One of Quantum Computing's Biggest Problems – IEEE Spectrum".
  257. Garisto, Daniel. "Quantum Computer Made from Photons Achieves a New Record". Scientific American. Retrieved June 30, 2021.
  258. z8826307 (April 16, 2020). "Hot qubits made in Sydney break one of the biggest constraints to practical quantum computers". UNSW Newsroom.{{cite web}}: CS1 maint: numeric names: authors list (link)
  259. z8826307 (March 12, 2020). "Engineers crack 58-year-old puzzle on way to quantum breakthrough". UNSW Newsroom.{{cite web}}: CS1 maint: numeric names: authors list (link)
  260. "Wiring the quantum computer of the future: A novel simple build with existing technology".
  261. "Quantum researchers able to split one photon into three". phys.org. Retrieved March 9, 2020.
  262. Chang, C. W. Sandbo; Sabín, Carlos; Forn-Díaz, P.; Quijandría, Fernando; Vadiraj, A. M.; Nsanzineza, I.; Johansson, G.; Wilson, C. M. (January 16, 2020). "Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity". Physical Review X. 10 (1): 011011. arXiv: 1907.08692 . Bibcode:2020PhRvX..10a1011C. doi: 10.1103/PhysRevX.10.011011 .
  263. "Artificial atoms create stable qubits for quantum computing". phys.org. Retrieved March 9, 2020.
  264. Leon, R. C. C.; Yang, C. H.; Hwang, J. C. C.; Lemyre, J. Camirand; Tanttu, T.; Huang, W.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Laucht, A.; Pioro-Ladrière, M.; Saraiva, A.; Dzurak, A. S. (February 11, 2020). "Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot". Nature Communications. 11 (1): 797. arXiv: 1902.01550 . Bibcode:2020NatCo..11..797L. doi:10.1038/s41467-019-14053-w. ISSN   2041-1723. PMC   7012832 . PMID   32047151.
  265. "Producing single photons from a stream of single electrons". phys.org. Retrieved March 8, 2020.
  266. Hsiao, Tzu-Kan; Rubino, Antonio; Chung, Yousun; Son, Seok-Kyun; Hou, Hangtian; Pedrós, Jorge; Nasir, Ateeq; Éthier-Majcher, Gabriel; Stanley, Megan J.; Phillips, Richard T.; Mitchell, Thomas A.; Griffiths, Jonathan P.; Farrer, Ian; Ritchie, David A.; Ford, Christopher J. B. (February 14, 2020). "Single-photon emission from single-electron transport in a SAW-driven lateral light-emitting diode". Nature Communications. 11 (1): 917. arXiv: 1901.03464 . Bibcode:2020NatCo..11..917H. doi:10.1038/s41467-020-14560-1. ISSN   2041-1723. PMC   7021712 . PMID   32060278.
  267. "Scientists 'film' a quantum measurement". phys.org. Retrieved March 9, 2020.
  268. Pokorny, Fabian; Zhang, Chi; Higgins, Gerard; Cabello, Adán; Kleinmann, Matthias; Hennrich, Markus (February 25, 2020). "Tracking the Dynamics of an Ideal Quantum Measurement". Physical Review Letters. 124 (8): 080401. arXiv: 1903.10398 . Bibcode:2020PhRvL.124h0401P. doi:10.1103/PhysRevLett.124.080401. PMID   32167322. S2CID   85501331.
  269. "Scientists measure electron spin qubit without demolishing it". phys.org. Retrieved April 5, 2020.
  270. Yoneda, J.; Takeda, K.; Noiri, A.; Nakajima, T.; Li, S.; Kamioka, J.; Kodera, T.; Tarucha, S. (March 2, 2020). "Quantum non-demolition readout of an electron spin in silicon". Nature Communications. 11 (1): 1144. arXiv: 1910.11963 . Bibcode:2020NatCo..11.1144Y. doi:10.1038/s41467-020-14818-8. ISSN   2041-1723. PMC   7052195 . PMID   32123167.
  271. "Engineers crack 58-year-old puzzle on way to quantum breakthrough". phys.org. Retrieved April 5, 2020.
  272. Asaad, Serwan; Mourik, Vincent; Joecker, Benjamin; Johnson, Mark A. I.; Baczewski, Andrew D.; Firgau, Hannes R.; Mądzik, Mateusz T.; Schmitt, Vivien; Pla, Jarryd J.; Hudson, Fay E.; Itoh, Kohei M.; McCallum, Jeffrey C.; Dzurak, Andrew S.; Laucht, Arne; Morello, Andrea (March 2020). "Coherent electrical control of a single high-spin nucleus in silicon". Nature. 579 (7798): 205–209. arXiv: 1906.01086 . Bibcode:2020Natur.579..205A. doi:10.1038/s41586-020-2057-7. PMID   32161384. S2CID   174797899.
  273. Laboratory, The Army Research. "Scientists create quantum sensor that covers entire radio frequency spectrum". phys.org. Retrieved April 14, 2024.
  274. Meyer, David H; Castillo, Zachary A; Cox, Kevin C; Kunz, Paul D (January 10, 2020). "Assessment of Rydberg atoms for wideband electric field sensing". Journal of Physics B: Atomic, Molecular and Optical Physics. 53 (3): 034001. arXiv: 1910.00646 . Bibcode:2020JPhB...53c4001M. doi:10.1088/1361-6455/ab6051. ISSN   0953-4075. S2CID   203626886.
  275. "Researchers demonstrate the missing link for a quantum internet". phys.org. Retrieved April 7, 2020.
  276. Bhaskar, M. K.; Riedinger, R.; Machielse, B.; Levonian, D. S.; Nguyen, C. T.; Knall, E. N.; Park, H.; Englund, D.; Lončar, M.; Sukachev, D. D.; Lukin, M. D. (April 2020). "Experimental demonstration of memory-enhanced quantum communication". Nature. 580 (7801): 60–64. arXiv: 1909.01323 . Bibcode:2020Natur.580...60B. doi:10.1038/s41586-020-2103-5. PMID   32238931. S2CID   202539813.
  277. Delbert, Caroline (April 17, 2020). "Hot Qubits Could Deliver a Quantum Computing Breakthrough". Popular Mechanics. Retrieved May 16, 2020.
  278. "'Hot' qubits crack quantum computing temperature barrier – ABC News". www.abc.net.au. April 15, 2020. Retrieved May 16, 2020.
  279. "Hot qubits break one of the biggest constraints to practical quantum computers". phys.org. Retrieved May 16, 2020.
  280. Yang, C. H.; Leon, R. C. C.; Hwang, J. C. C.; Saraiva, A.; Tanttu, T.; Huang, W.; Camirand Lemyre, J.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Pioro-Ladrière, M.; Laucht, A.; Dzurak, A. S. (April 2020). "Operation of a silicon quantum processor unit cell above one kelvin". Nature. 580 (7803): 350–354. arXiv: 1902.09126 . Bibcode:2020Natur.580..350Y. doi:10.1038/s41586-020-2171-6. PMID   32296190. S2CID   119520750.
  281. "New discovery settles long-standing debate about photovoltaic materials". phys.org. Retrieved May 17, 2020.
  282. Liu, Z.; Vaswani, C.; Yang, X.; Zhao, X.; Yao, Y.; Song, Z.; Cheng, D.; Shi, Y.; Luo, L.; Mudiyanselage, D.-H.; Huang, C.; Park, J.-M.; Kim, R. H. J.; Zhao, J.; Yan, Y.; Ho, K.-M.; Wang, J. (April 16, 2020). "Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite ". Physical Review Letters. 124 (15): 157401. arXiv: 1905.12373 . doi: 10.1103/PhysRevLett.124.157401 . PMID   32357060. S2CID   214606050.
  283. "Scientists demonstrate quantum radar prototype". phys.org. Retrieved June 12, 2020.
  284. "'Quantum radar' uses entangled photons to detect objects". New Atlas. May 12, 2020. Retrieved June 12, 2020.
  285. Barzanjeh, S.; Pirandola, S.; Vitali, D.; Fink, J. M. (May 1, 2020). "Microwave quantum illumination using a digital receiver". Science Advances. 6 (19): eabb0451. arXiv: 1908.03058 . Bibcode:2020SciA....6..451B. doi: 10.1126/sciadv.abb0451 . PMC   7272231 . PMID   32548249.
  286. "Scientists break the link between a quantum material's spin and orbital states". phys.org. Retrieved June 12, 2020.
  287. Shen, L.; Mack, S. A.; Dakovski, G.; Coslovich, G.; Krupin, O.; Hoffmann, M.; Huang, S.-W.; Chuang, Y-D.; Johnson, J. A.; Lieu, S.; Zohar, S.; Ford, C.; Kozina, M.; Schlotter, W.; Minitti, M. P.; Fujioka, J.; Moore, R.; Lee, W-S.; Hussain, Z.; Tokura, Y.; Littlewood, P.; Turner, J. J. (May 12, 2020). "Decoupling spin–orbital correlations in a layered manganite amidst ultrafast hybridized charge-transfer band excitation". Physical Review B. 101 (20): 201103. arXiv: 1912.10234 . Bibcode:2020PhRvB.101t1103S. doi: 10.1103/PhysRevB.101.201103 .
  288. "Photon discovery is a major step toward large-scale quantum technologies". phys.org. Retrieved June 14, 2020.
  289. "Physicists develop integrated photon source for macro quantum-photonics". optics.org. Retrieved June 14, 2020.
  290. Paesani, S.; Borghi, M.; Signorini, S.; Maïnos, A.; Pavesi, L.; Laing, A. (May 19, 2020). "Near-ideal spontaneous photon sources in silicon quantum photonics". Nature Communications. 11 (1): 2505. arXiv: 2005.09579 . Bibcode:2020NatCo..11.2505P. doi: 10.1038/s41467-020-16187-8 . PMC   7237445 . PMID   32427911.
  291. Lachmann, Maike D.; Rasel, Ernst M. (June 11, 2020). "Quantum matter orbits Earth". Nature. 582 (7811): 186–187. Bibcode:2020Natur.582..186L. doi: 10.1038/d41586-020-01653-6 . PMID   32528088.
  292. "Quantum 'fifth state of matter' observed in space for first time". phys.org. Retrieved July 4, 2020.
  293. Aveline, David C.; Williams, Jason R.; Elliott, Ethan R.; Dutenhoffer, Chelsea; Kellogg, James R.; Kohel, James M.; Lay, Norman E.; Oudrhiri, Kamal; Shotwell, Robert F.; Yu, Nan; Thompson, Robert J. (June 2020). "Observation of Bose–Einstein condensates in an Earth-orbiting research lab". Nature. 582 (7811): 193–197. Bibcode:2020Natur.582..193A. doi:10.1038/s41586-020-2346-1. PMID   32528092. S2CID   219568565.
  294. "The smallest motor in the world". phys.org. Retrieved July 4, 2020.
  295. "Nano-motor of just 16 atoms runs at the boundary of quantum physics". New Atlas. June 17, 2020. Retrieved July 4, 2020.
  296. Stolz, Samuel; Gröning, Oliver; Prinz, Jan; Brune, Harald; Widmer, Roland (June 15, 2020). "Molecular motor crossing the frontier of classical to quantum tunneling motion". Proceedings of the National Academy of Sciences. 117 (26): 14838–14842. Bibcode:2020PNAS..11714838S. doi: 10.1073/pnas.1918654117 . ISSN   0027-8424. PMC   7334648 . PMID   32541061.
  297. "New techniques improve quantum communication, entangle phonons". phys.org. Retrieved July 5, 2020.
  298. Schirber, Michael (June 12, 2020). "Quantum Erasing with Phonons". Physics. Retrieved July 5, 2020.
  299. Chang, H.-S.; Zhong, Y. P.; Bienfait, A.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A.; Povey, R. G.; Satzinger, K. J.; Cleland, A. N. (June 17, 2020). "Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System". Physical Review Letters. 124 (24): 240502. arXiv: 2005.12334 . Bibcode:2020PhRvL.124x0502C. doi:10.1103/PhysRevLett.124.240502. PMID   32639797. S2CID   218889298.
  300. Bienfait, A.; Zhong, Y. P.; Chang, H.-S.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A.; Povey, R. G.; Satzinger, K. J.; Cleland, A. N. (June 12, 2020). "Quantum Erasure Using Entangled Surface Acoustic Phonons". Physical Review X. 10 (2): 021055. arXiv: 2005.09311 . Bibcode:2020PhRvX..10b1055B. doi: 10.1103/PhysRevX.10.021055 .
  301. "Honeywell claims to have world's highest performing quantum computer according to IBM's benchmark". ZDNet .
  302. "UChicago scientists discover way to make quantum states last 10,000 times longer". Argonne National Laboratory. August 13, 2020. Retrieved August 14, 2020.
  303. Miao, Kevin C.; Blanton, Joseph P.; Anderson, Christopher P.; Bourassa, Alexandre; Crook, Alexander L.; Wolfowicz, Gary; Abe, Hiroshi; Ohshima, Takeshi; Awschalom, David D. (May 12, 2020). "Universal coherence protection in a solid-state spin qubit". Science. 369 (6510): 1493–1497. arXiv: 2005.06082v1 . Bibcode:2020Sci...369.1493M. doi:10.1126/science.abc5186. PMID   32792463. S2CID   218613907.
  304. "Quantum computers may be destroyed by high-energy particles from space". New Scientist. Retrieved September 7, 2020.
  305. "Cosmic rays may soon stymie quantum computing". phys.org. Retrieved September 7, 2020.
  306. Vepsäläinen, Antti P.; Karamlou, Amir H.; Orrell, John L.; Dogra, Akshunna S.; Loer, Ben; Vasconcelos, Francisca; Kim, David K.; Melville, Alexander J.; Niedzielski, Bethany M.; Yoder, Jonilyn L.; Gustavsson, Simon; Formaggio, Joseph A.; VanDevender, Brent A.; Oliver, William D. (August 2020). "Impact of ionizing radiation on superconducting qubit coherence". Nature. 584 (7822): 551–556. arXiv: 2001.09190 . Bibcode:2020Natur.584..551V. doi:10.1038/s41586-020-2619-8. ISSN   1476-4687. PMID   32848227. S2CID   210920566 . Retrieved September 7, 2020.
  307. "Google conducts largest chemical simulation on a quantum computer to date". phys.org. Retrieved September 7, 2020.
  308. Savage, Neil. "Google's Quantum Computer Achieves Chemistry Milestone". Scientific American. Retrieved September 7, 2020.
  309. Arute, Frank; et al. (Google AI Quantum Collaborators) (August 28, 2020). "Hartree–Fock on a superconducting qubit quantum computer". Science. 369 (6507): 1084–1089. arXiv: 2004.04174 . Bibcode:2020Sci...369.1084.. doi:10.1126/science.abb9811. ISSN   0036-8075. PMID   32855334. S2CID   215548188 . Retrieved September 7, 2020.
  310. "Multi-user communication network paves the way towards the quantum internet". Physics World. September 8, 2020. Retrieved October 8, 2020.
  311. Joshi, Siddarth Koduru; Aktas, Djeylan; Wengerowsky, Sören; Lončarić, Martin; Neumann, Sebastian Philipp; Liu, Bo; Scheidl, Thomas; Lorenzo, Guillermo Currás; Samec, Željko; Kling, Laurent; Qiu, Alex; Razavi, Mohsen; Stipčević, Mario; Rarity, John G.; Ursin, Rupert (September 1, 2020). "A trusted node–free eight-user metropolitan quantum communication network". Science Advances. 6 (36): eaba0959. arXiv: 1907.08229 . Bibcode:2020SciA....6..959J. doi: 10.1126/sciadv.aba0959 . ISSN   2375-2548. PMC   7467697 . PMID   32917585. CC-BY icon.svg Text and images are available under a Creative Commons Attribution 4.0 International License.
  312. "First Photonic Quantum Computer on the Cloud – IEEE Spectrum".
  313. "Quantum entanglement realized between distant large objects". phys.org. Retrieved October 9, 2020.
  314. Thomas, Rodrigo A.; Parniak, Michał; Østfeldt, Christoffer; Møller, Christoffer B.; Bærentsen, Christian; Tsaturyan, Yeghishe; Schliesser, Albert; Appel, Jürgen; Zeuthen, Emil; Polzik, Eugene S. (September 21, 2020). "Entanglement between distant macroscopic mechanical and spin systems". Nature Physics. 17 (2): 228–233. arXiv: 2003.11310 . doi:10.1038/s41567-020-1031-5. ISSN   1745-2481. S2CID   214641162 . Retrieved October 9, 2020.
  315. "Chinese team unveils exceedingly fast quantum computer". China Daily. December 4, 2020. Retrieved December 5, 2020.
  316. "China Stakes Its Claim to Quantum Supremacy". Wired. December 3, 2020. Retrieved December 5, 2020.
  317. Zhong, Han-Sen; Wang, Hui; Deng, Yu-Hao; Chen, Ming-Cheng; Peng, Li-Chao; Luo, Yi-Han; Qin, Jian; Wu, Dian; Ding, Xing; Hu, Yi; Hu, Peng; Yang, Xiao-Yan; Zhang, Wei-Jun; Li, Hao; Li, Yuxuan; Jiang, Xiao; Gan, Lin; Yang, Guangwen; You, Lixing; Wang, Zhen; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei (December 18, 2020). "Quantum computational advantage using photons". Science. 370 (6523): 1460–1463. arXiv: 2012.01625 . Bibcode:2020Sci...370.1460Z. doi:10.1126/science.abe8770. ISSN   0036-8075. PMID   33273064. S2CID   227254333 . Retrieved January 22, 2021.
  318. "Honeywell introduces quantum computing as a service with subscription offering". ZDNet .
  319. "Three Frosty Innovations for Better Quantum Computers – IEEE Spectrum".
  320. "Scientists Achieve Direct Counterfactual Quantum Communication For The First Time". Futurism. Retrieved January 16, 2021.
  321. "Elementary particles part ways with their properties". phys.org. Retrieved January 16, 2021.
  322. McRae, Mike. "In a Mind-Bending New Paper, Physicists Give Schrodinger's Cat a Cheshire Grin". ScienceAlert. Retrieved January 16, 2021.
  323. Aharonov, Yakir; Rohrlich, Daniel (December 21, 2020). "What Is Nonlocal in Counterfactual Quantum Communication?". Physical Review Letters. 125 (26): 260401. arXiv: 2011.11667 . Bibcode:2020PhRvL.125z0401A. doi:10.1103/PhysRevLett.125.260401. PMID   33449741. S2CID   145994494 . Retrieved January 16, 2021. CC-BY icon.svg Available under CC BY 4.0.
  324. "The world's first integrated quantum communication network". phys.org. Retrieved February 11, 2021.
  325. Chen, Yu-Ao; Zhang, Qiang; Chen, Teng-Yun; Cai, Wen-Qi; Liao, Sheng-Kai; Zhang, Jun; Chen, Kai; Yin, Juan; Ren, Ji-Gang; Chen, Zhu; Han, Sheng-Long; Yu, Qing; Liang, Ken; Zhou, Fei; Yuan, Xiao; Zhao, Mei-Sheng; Wang, Tian-Yin; Jiang, Xiao; Zhang, Liang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Lu, Chao-Yang; Shu, Rong; Wang, Jian-Yu; Li, Li; Liu, Nai-Le; Xu, Feihu; Wang, Xiang-Bin; Peng, Cheng-Zhi; Pan, Jian-Wei (January 2021). "An integrated space-to-ground quantum communication network over 4,600 kilometres". Nature. 589 (7841): 214–219. Bibcode:2021Natur.589..214C. doi:10.1038/s41586-020-03093-8. ISSN   1476-4687. PMID   33408416. S2CID   230812317 . Retrieved February 11, 2021.
  326. "Error-protected quantum bits entangled for the first time". phys.org. Retrieved August 30, 2021.
  327. Erhard, Alexander; Poulsen Nautrup, Hendrik; Meth, Michael; Postler, Lukas; Stricker, Roman; Stadler, Martin; Negnevitsky, Vlad; Ringbauer, Martin; Schindler, Philipp; Briegel, Hans J.; Blatt, Rainer; Friis, Nicolai; Monz, Thomas (January 2021). "Entangling logical qubits with lattice surgery". Nature. 589 (7841): 220–224. arXiv: 2006.03071 . Bibcode:2021Natur.589..220E. doi:10.1038/s41586-020-03079-6. ISSN   1476-4687. PMID   33442044. S2CID   219401398 . Retrieved August 30, 2021.
  328. "Using drones to create local quantum networks". phys.org. Retrieved February 12, 2021.
  329. Liu, Hua-Ying; Tian, Xiao-Hui; Gu, Changsheng; Fan, Pengfei; Ni, Xin; Yang, Ran; Zhang, Ji-Ning; Hu, Mingzhe; Guo, Jian; Cao, Xun; Hu, Xiaopeng; Zhao, Gang; Lu, Yan-Qing; Gong, Yan-Xiao; Xie, Zhenda; Zhu, Shi-Ning (January 15, 2021). "Optical-Relayed Entanglement Distribution Using Drones as Mobile Nodes". Physical Review Letters. 126 (2): 020503. Bibcode:2021PhRvL.126b0503L. doi:10.1103/PhysRevLett.126.020503. PMID   33512193. S2CID   231761406 . Retrieved February 12, 2021.
  330. "BMW explores quantum computing to boost supply chain efficiencies". ZDNet .
  331. "Physicists develop record-breaking source for single photons". phys.org. Retrieved February 12, 2021.
  332. Tomm, Natasha; Javadi, Alisa; Antoniadis, Nadia Olympia; Najer, Daniel; Löbl, Matthias Christian; Korsch, Alexander Rolf; Schott, Rüdiger; Valentin, Sascha René; Wieck, Andreas Dirk; Ludwig, Arne; Warburton, Richard John (January 28, 2021). "A bright and fast source of coherent single photons". Nature Nanotechnology. 16 (4): 399–403. arXiv: 2007.12654 . Bibcode:2021NatNa..16..399T. doi:10.1038/s41565-020-00831-x. ISSN   1748-3395. PMID   33510454. S2CID   220769410 . Retrieved February 12, 2021.
  333. "You can now try out a quantum computer with Microsoft's Azure cloud service".
  334. "Quantum systems learn joint computing". phys.org. Retrieved March 7, 2021.
  335. Daiss, Severin; Langenfeld, Stefan; Welte, Stephan; Distante, Emanuele; Thomas, Philip; Hartung, Lukas; Morin, Olivier; Rempe, Gerhard (February 5, 2021). "A quantum-logic gate between distant quantum-network modules". Science. 371 (6529): 614–617. arXiv: 2103.13095 . Bibcode:2021Sci...371..614D. doi:10.1126/science.abe3150. ISSN   0036-8075. PMID   33542133. S2CID   231808141 . Retrieved March 7, 2021.
  336. "Quantum computing: Honeywell just quadrupled the power of its computer". ZDNet .
  337. "We could detect alien civilizations through their interstellar quantum communication". phys.org. Retrieved May 9, 2021.
  338. Hippke, Michael (April 13, 2021). "Searching for Interstellar Quantum Communications". The Astronomical Journal. 162 (1): 1. arXiv: 2104.06446 . Bibcode:2021AJ....162....1H. doi: 10.3847/1538-3881/abf7b7 . S2CID   233231350.
  339. "Vibrating drumheads are entangled quantum mechanically". Physics World. May 17, 2021. Retrieved June 14, 2021.
  340. Lépinay, Laure Mercier de; Ockeloen-Korppi, Caspar F.; Woolley, Matthew J.; Sillanpää, Mika A. (May 7, 2021). "Quantum mechanics–free subsystem with mechanical oscillators". Science. 372 (6542): 625–629. arXiv: 2009.12902 . Bibcode:2021Sci...372..625M. doi:10.1126/science.abf5389. ISSN   0036-8075. PMID   33958476. S2CID   221971015 . Retrieved June 14, 2021.
  341. Kotler, Shlomi; Peterson, Gabriel A.; Shojaee, Ezad; Lecocq, Florent; Cicak, Katarina; Kwiatkowski, Alex; Geller, Shawn; Glancy, Scott; Knill, Emanuel; Simmonds, Raymond W.; Aumentado, José; Teufel, John D. (May 7, 2021). "Direct observation of deterministic macroscopic entanglement". Science. 372 (6542): 622–625. arXiv: 2004.05515 . Bibcode:2021Sci...372..622K. doi:10.1126/science.abf2998. ISSN   0036-8075. PMID   33958475. S2CID   233872863 . Retrieved June 14, 2021.
  342. "TOSHIBA ANNOUNCES BREAKTHROUGH IN LONG DISTANCE QUANTUM COMMUNICATION". Toshiba. June 12, 2021. Retrieved June 12, 2021.
  343. "Researchers create an 'un-hackable' quantum network over hundreds of kilometers using optical fiber". ZDNet. June 8, 2021. Retrieved June 12, 2021.
  344. Pittaluga, Mirko; Minder, Mariella; Lucamarini, Marco; Sanzaro, Mirko; Woodward, Robert I.; Li, Ming-Jun; Yuan, Zhiliang; Shields, Andrew J. (July 2021). "600-km repeater-like quantum communications with dual-band stabilization". Nature Photonics. 15 (7): 530–535. arXiv: 2012.15099 . Bibcode:2021NaPho..15..530P. doi:10.1038/s41566-021-00811-0. ISSN   1749-4893. S2CID   229923162 . Retrieved July 19, 2021.
  345. "Quantum computer is smallest ever, claim physicists". Physics World. July 7, 2021. Retrieved July 11, 2021.
  346. Pogorelov, I.; Feldker, T.; Marciniak, Ch. D.; Postler, L.; Jacob, G.; Krieglsteiner, O.; Podlesnic, V.; Meth, M.; Negnevitsky, V.; Stadler, M.; Höfer, B.; Wächter, C.; Lakhmanskiy, K.; Blatt, R.; Schindler, P.; Monz, T. (June 17, 2021). "Compact Ion-Trap Quantum Computing Demonstrator". PRX Quantum. 2 (2): 020343. arXiv: 2101.11390 . Bibcode:2021PRXQ....2b0343P. doi:10.1103/PRXQuantum.2.020343. S2CID   231719119 . Retrieved July 11, 2021.
  347. "IBM researchers demonstrate the advantage that quantum computers have over classical computers". ZDNet .
  348. "Bigger quantum computers, faster: This new idea could be the quickest route to real world apps". ZDNet .
  349. "Harvard-led physicists take big step in race to quantum computing". Scienmag: Latest Science and Health News. July 9, 2021. Retrieved August 14, 2021.
  350. Ebadi, Sepehr; Wang, Tout T.; Levine, Harry; Keesling, Alexander; Semeghini, Giulia; Omran, Ahmed; Bluvstein, Dolev; Samajdar, Rhine; Pichler, Hannes; Ho, Wen Wei; Choi, Soonwon; Sachdev, Subir; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (July 2021). "Quantum phases of matter on a 256-atom programmable quantum simulator". Nature. 595 (7866): 227–232. arXiv: 2012.12281 . Bibcode:2021Natur.595..227E. doi:10.1038/s41586-021-03582-4. ISSN   1476-4687. PMID   34234334. S2CID   229363764.
  351. Scholl, Pascal; Schuler, Michael; Williams, Hannah J.; Eberharter, Alexander A.; Barredo, Daniel; Schymik, Kai-Niklas; Lienhard, Vincent; Henry, Louis-Paul; Lang, Thomas C.; Lahaye, Thierry; Läuchli, Andreas M. (July 7, 2021). "Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms". Nature. 595 (7866): 233–238. arXiv: 2012.12268 . Bibcode:2021Natur.595..233S. doi:10.1038/s41586-021-03585-1. ISSN   1476-4687. PMID   34234335. S2CID   229363462.
  352. "China quantum computers are 1 million times more powerful Google's". TechHQ. October 28, 2021. Retrieved November 16, 2021.
  353. "China's quantum computing efforts surpasses the West's again". Tech Wire Asia. November 3, 2021. Retrieved November 16, 2021.
  354. "Canadian researchers achieve first quantum simulation of baryons". University of Waterloo . November 11, 2021. Retrieved November 12, 2021.
  355. Atas, Yasar Y.; Zhang, Jinglei; Lewis, Randy; Jahanpour, Amin; Haase, Jan F.; Muschik, Christine A. (November 11, 2021). "SU(2) hadrons on a quantum computer via a variational approach". Nature Communications. 12 (1): 6499. Bibcode:2021NatCo..12.6499A. doi:10.1038/s41467-021-26825-4. ISSN   2041-1723. PMC   8586147 . PMID   34764262.
  356. "IBM creates largest ever superconducting quantum computer". New Scientist. Retrieved February 12, 2022.
  357. "IBM Unveils Breakthrough 127-Qubit Quantum Processor". IBM Newsroom. Retrieved January 12, 2022.
  358. "Europe's First Quantum Computer with More Than 5K Qubits Launched at Jülich". HPC Wire. January 18, 2022. Archived from the original on January 20, 2022. Retrieved January 20, 2022.
  359. "Artificial neurons go quantum with photonic circuits". University of Vienna . Retrieved April 19, 2022.
  360. Spagnolo, Michele; Morris, Joshua; Piacentini, Simone; Antesberger, Michael; Massa, Francesco; Crespi, Andrea; Ceccarelli, Francesco; Osellame, Roberto; Walther, Philip (April 2022). "Experimental photonic quantum memristor". Nature Photonics. 16 (4): 318–323. arXiv: 2105.04867 . Bibcode:2022NaPho..16..318S. doi:10.1038/s41566-022-00973-5. ISSN   1749-4893. S2CID   234358015.
  361. "Quantinuum Announces Quantum Volume 4096 Achievement". www.quantinuum.com. April 14, 2022. Retrieved May 2, 2022.
  362. Universität Innsbruck (May 27, 2022). "Error-Free Quantum Computing Gets Real". www.uibk.ac.at. Retrieved February 13, 2023.
  363. "A Huge Step Forward in Quantum Computing Was Just Announced: The First-Ever Quantum Circuit". Science Alert. June 22, 2022. Retrieved June 23, 2022.
  364. Kiczynski, M.; Gorman, S. K.; Geng, H.; Donnelly, M. B.; Chung, Y.; He, Y.; Keizer, J. G.; Simmons, M. Y. (June 2022). "Engineering topological states in atom-based semiconductor quantum dots". Nature. 606 (7915): 694–699. Bibcode:2022Natur.606..694K. doi:10.1038/s41586-022-04706-0. ISSN   1476-4687. PMC   9217742 . PMID   35732762.
  365. Conover, Emily (July 5, 2022). "Aliens could send quantum messages to Earth, calculations suggest". Science News. Retrieved July 13, 2022.
  366. Berera, Arjun; Calderón-Figueroa, Jaime (June 28, 2022). "Viability of quantum communication across interstellar distances". Physical Review D. 105 (12): 123033. arXiv: 2205.11816 . Bibcode:2022PhRvD.105l3033B. doi:10.1103/PhysRevD.105.123033. S2CID   249017926.
  367. Universität Innsbruck (July 21, 2022). "Quantum computer works with more than zero and one". www.uibk.ac.at. Retrieved February 13, 2023.
  368. Purdue University (August 15, 2022). "2D array of electron and nuclear spin qubits opens new frontier in quantum science". Phys.org.
  369. Max Planck Society (August 24, 2022). "Physicists entangle more than a dozen photons efficiently". Nature. 608 (7924). Phys.org: 677–681. doi:10.1038/s41586-022-04987-5. PMC   9402438 . PMID   36002484 . Retrieved August 25, 2022.
  370. Ritter, Florian; Max Planck Society. "Metasurfaces offer new possibilities for quantum research". Phys.org.
  371. McRae, Mike (August 31, 2022). "Quantum Physicists Set New Record For Entangling Photons Together". Science Alert.
  372. National Institute of Information and Communications Technology (September 2, 2022). "New method to systematically find optimal quantum operation sequences for quantum computers". Phys.org. Archived from the original on September 4, 2022. Retrieved September 8, 2023.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  373. University of New South Wales (September 30, 2022). "For the longest time: Quantum computing engineers set new standard in silicon chip performance". Science Advances. 7 (33). Australia: Phys.org. doi:10.1126/sciadv.abg9158. PMC   8363148 . PMID   34389538. Archived from the original on October 1, 2022. Retrieved September 8, 2023.{{cite journal}}: CS1 maint: bot: original URL status unknown (link)
  374. "IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two". IBM. November 9, 2022. Retrieved November 10, 2022.
  375. "IBM unveils its 433 qubit Osprey quantum computer". Tech Crunch. November 9, 2022. Retrieved November 10, 2022.
  376. "SpinQ Introduces Trio of Portable Quantum Computers". December 15, 2022. Retrieved December 15, 2022.
  377. "World's first portable quantum computers on sale in Japan: Prices start at $8,700".
  378. "Il futuro è ora: I primi computer quantistici portatili arrivano sul mercato" [The future is now: The first portable quantum computers hit the market] (in Italian). May 19, 2023.
  379. Universität Innsbruck (February 3, 2023). "Entangled atoms across the Innsbruck quantum network". www.uibk.ac.at. Retrieved February 13, 2023.
  380. "State of Quantum Computing in Europe: AQT pushing performance with a Quantum Volume of 128". AQT | ALPINE QUANTUM TECHNOLOGIES. February 8, 2023. Retrieved February 13, 2023.
  381. Bartolucci, Sara; Birchall, Patrick; Bombín, Hector; Cable, Hugo; Dawson, Chris; Gimeno-Segovia, Mercedes; Johnston, Eric; Kieling, Konrad; Nickerson, Naomi; Pant, Mihir; Pastawski, Fernando; Rudolph, Terry; Sparrow, Chris (February 17, 2023). "Fusion-based quantum computation". Nature Communications. 14 (1): 912. Bibcode:2023NatCo..14..912B. doi:10.1038/s41467-023-36493-1. ISSN   2041-1723. PMC   9938229 . PMID   36805650.
  382. "India's first quantum computing-based telecom network link now operational: Ashwini Vaishnaw". The Economic Times. March 27, 2023.
  383. Chang, Kenneth (June 14, 2023). "Quantum Computing Advance Begins New Era, IBM Says – A quantum computer came up with better answers to a physics problem than a conventional supercomputer". The New York Times . Archived from the original on June 14, 2023. Retrieved June 15, 2023.
  384. Kim, Youngseok; et al. (June 14, 2023). "Evidence for the utility of quantum computing before fault tolerance". Nature . 618 (7965): 500–505. Bibcode:2023Natur.618..500K. doi:10.1038/s41586-023-06096-3. PMC   10266970 . PMID   37316724.
  385. Lardinois, Frederic (June 21, 2023). "Microsoft expects to build a quantum supercomputer within 10 years". Tech Crunch.
  386. Bluvstein, Dolev; Evered, Simon J.; Geim, Alexandra A.; Li, Sophie H.; Zhou, Hengyun; Manovitz, Tom; Ebadi, Sepehr; Cain, Madelyn; Kalinowski, Marcin; Hangleiter, Dominik; Bonilla Ataides, J. Pablo; Maskara, Nishad; Cong, Iris; Gao, Xun; Sales Rodriguez, Pedro; Karolyshyn, Thomas; Semeghini, Giulia; Gullans, Michael J.; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (2024). "Logical quantum processor based on reconfigurable atom arrays". Nature. 626 (7997): 58–65. arXiv: 2312.03982 . Bibcode:2024Natur.626...58B. doi:10.1038/s41586-023-06927-3. PMC   10830422 . PMID   38056497.
  387. Pause, L.; Sturm, L.; Mittenbühler, M.; Amann, S.; Preuschoff, T.; Schäffner, D.; Schlosser, S.; Birkl, G. (2024). "Supercharged two-dimensional tweezer array with more than 1000 atomic qubits". Optica. 11 (2): 222–226. arXiv: 2310.09191 . Bibcode:2024Optic..11..222P. doi:10.1364/OPTICA.513551.
  388. Dumke, R.; Volk, M.; Müther, T.; Buchkremer, F. B. J.; Birkl, G.; Ertmer, W. (August 8, 2002). "Micro-optical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits". Physical Review Letters. 89 (9): 097903. arXiv: quant-ph/0110140 . Bibcode:2002PhRvL..89i7903D. doi:10.1103/PhysRevLett.89.097903. PMID   12190441.
  389. "Quantum startup Atom Computing first to exceed 1,000 qubits". Boulder, Colorado. October 24, 2023.
  390. Russell, John (October 24, 2023). "Atom Computing Wins the Race to 1000 Qubits". HPC Wire.
  391. McDowell, Steve. "IBM Advances Quantum Computing with New Processors & Platforms". Forbes. Retrieved December 27, 2023.
  392. "IBM Quantum Computing Blog | The hardware and software for the era of quantum utility is here". www.ibm.com. Retrieved December 27, 2023.
  393. "IBM's roadmap for scaling quantum technology". IBM Research Blog. February 9, 2021. Retrieved December 27, 2023.
  394. Bluvstein, Dolev; Evered, Simon J.; Geim, Alexandra A.; Li, Sophie H.; Zhou, Hengyun; Manovitz, Tom; Ebadi, Sepehr; Cain, Madelyn; Kalinowski, Marcin; Hangleiter, Dominik; Bonilla Ataides, J. Pablo; Maskara, Nishad; Cong, Iris; Gao, Xun; Sales Rodriguez, Pedro; Karolyshyn, Thomas; Semeghini, Giulia; Gullans, Michael J.; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D. (2024). "Logical quantum processor based on reconfigurable atom arrays". Nature. 626 (7997): 58–65. arXiv: 2312.03982 . Bibcode:2024Natur.626...58B. doi:10.1038/s41586-023-06927-3. PMC   10830422 . PMID   38056497.
  395. Thomas, Philip; Ruscio, Leonardo; Morin, Olivier; Rempe, Gerhard (May 16, 2024). "Fusion of deterministically generated photonic graph states". Nature. 629 (8012): 567–572. arXiv: 2403.11950 . Bibcode:2024Natur.629..567T. doi:10.1038/s41586-024-07357-5. ISSN   0028-0836. PMC   11096110 . PMID   38720079.
  396. "Photonic Inc. Demonstrates Distributed Entanglement Between Two Modules Separated by 40 Meters of Fiber". www.quantumcomputingreport.com. May 30, 2024. Retrieved September 3, 2024.
  397. Acharya, Rajeev; et al. (December 9, 2024). "Quantum error correction below the surface code threshold". Nature: 1–3. arXiv: 2408.13687 . doi:10.1038/s41586-024-08449-y. PMID   39653125 . Retrieved December 9, 2024.
  398. Leswing, Kif (December 10, 2024). "Alphabet shares jump 6% after Google touts 'breakthrough' quantum chip". CNBC. Retrieved December 25, 2024.