Single-photon source

Last updated

A single-photon source (also known as a single photon emitter) [1] is a light source that emits light as single particles or photons. Single-photon sources are distinct from coherent light sources (lasers) and thermal light sources such as incandescent light bulbs. The Heisenberg uncertainty principle dictates that a state with an exact number of photons of a single frequency cannot be created. However, Fock states (or number states) can be studied for a system where the electric field amplitude is distributed over a narrow bandwidth. In this context, a single-photon source gives rise to an effectively one-photon number state.

Contents

Photons from an ideal single-photon source exhibit quantum mechanical characteristics. These characteristics include photon antibunching, so that the time between two successive photons is never less than some minimum value. This behaviour is normally demonstrated by using a beam splitter to direct about half of the incident photons toward one avalanche photodiode, and half toward a second. Pulses from one detector are used to provide a ‘counter start’ signal, to a fast electronic timer, and the other, delayed by a known number of nanoseconds, is used to provide a ‘counter stop’ signal. By repeatedly measuring the times between ‘start’ and ‘stop’ signals, one can form a histogram of time delay between two photons and the coincidence count- if bunching is not occurring, and photons are indeed well spaced, a clear notch around zero delay is visible.

History

Although the concept of a single photon was proposed by Planck as early as 1900, [2] a true single-photon source was not created in isolation until 1974. This was achieved by utilising a cascade transition within mercury atoms. [3] Individual atoms emit two photons at different frequencies in the cascade transition and by spectrally filtering the light the observation of one photon can be used to 'herald' the other. The observation of these single photons was characterised by its anticorrelation on the two output ports of a beamsplitter in a similar manner to the famous Hanbury Brown and Twiss experiment of 1956. [4]

Another single-photon source came in 1977 which used the fluorescence from an attenuated beam of sodium atoms. [5] A beam of sodium atoms was attenuated so that no more than one or two atoms contributed to the observed fluorescence radiation at any one time. In this way, only single emitters were producing light and the observed fluorescence showed the characteristic antibunching. The isolation of individual atoms continued with ion traps in the mid-1980s. A single ion could be held in a radio frequency Paul trap for an extended period of time (10 min) thus acting as a single emitter of multiple single photons as in the experiments of Diedrich and Walther. [6] At the same time the nonlinear process of parametric down conversion began to be utilised and from then until the present day it has become the workhorse of experiments requiring single photons.

Advances in microscopy led to the isolation of single molecules in the end of the 1980s. [7] Subsequently, single pentacene molecules were detected in p-terphenyl crystals. [8] The single molecules have begun to be utilised as single-photon sources. [9]

Within the 21st century defect centres in various solid state materials have emerged, [10] most notably diamond, silicon carbide [11] [12] and boron nitride. [13] the most studied defect is the nitrogen vacancy (NV) centers in diamond that was utilised as a source of single photons. [14] These sources along with molecules can use the strong confinement of light (mirrors, microresonators, optical fibres, waveguides, etc.) to enhance the emission of the NV centres. As well as NV centres and molecules, quantum dots (QDs), [15] quantum dots trapped in optical antenna, [16] functionalized carbon nanotubes, [17] [18] and two-dimensional materials [19] [20] [21] [22] [23] [24] [25] can also emit single photons and can be constructed from the same semiconductor materials as the light-confining structures. It is noted that the single photon sources at telecom wavelength of 1,550 nm are very important in fiber-optic communication and they are mostly indium arsenide QDs. [26] [27] However, by creating downconversion quantum interface from visible single photon sources, one still can create single photon at 1,550 nm with preserved antibunching. [28]

Exciting atoms and excitons to highly interacting Rydberg levels prevents more than one excitation over the so-called blockade volume. Hence Rydberg excitation in a small atomic ensembles [29] [30] or crystals [31] could act as a single photon emitters.

Definition

In quantum theory, photons describe quantized electromagnetic radiation. Specifically, a photon is an elementary excitation of a normal mode of the electromagnetic field. Thus a single-photon state is the quantum state of a radiation mode that contains a single excitation.

Single radiation modes are labelled by, among other quantities, the frequency of the electromagnetic radiation that they describe. However, in quantum optics, single-photon states also refer to mathematical superpositions of single-frequency (monochromatic) radiation modes. [32] This definition is general enough to include photon wave-packets, i.e., states of radiation that are localized to some extent in space and time.

Single-photon sources generate single-photon states as described above. In other words, ideal single-photon sources generate radiation with a photon-number distribution that has a mean one and variance zero. [33]

Characteristics

An ideal-single photon source produces single-photon states with 100% probability and optical vacuum or multi-photon states with 0% probability. Desirable properties of real-world single-photon sources include efficiency, robustness, ease of implementation and on-demand nature, i.e., generating single-photons at arbitrarily chosen times. Single-photon sources including single emitters such as single atoms, ions and molecules, and including solid-state emitters such as quantum dots, color centers and carbon nanotubes are on-demand. [34] Currently, there are many active nanomaterials engineered into single quantum emitters where their spontaneous emission could be tuned by changing the local density of optical states in dielectric nanostructures. The dielectric nanostructures are usually designed within the heterostructures to enhance the light-matter interaction, and thus further improve the efficiency of these single photon sources. [35] [36] Another type of source comprises non-deterministic sources, i.e., not on demand, and these include examples such as weak lasers, atomic cascades and parametric down-conversion.

The single-photon nature of a source can be quantized using the second-order correlation function . Ideal single-photon sources show and good single-photon sources have small . The second-order correlation function can be measured using the Hanbury-Brown–Twiss effect.

Types

The generation of a single photon occurs when a source creates only one photon within its fluorescence lifetime after being optically or electrically excited. An ideal single-photon source has yet to be created. Given that the main applications for a high-quality single-photon source are quantum key distribution, quantum repeaters [37] and quantum information science, the photons generated should also have a wavelength that would give low loss and attenuation when travelling through an optical fiber. Nowadays the most common sources of single photons are single molecules, Rydberg atoms, [38] [39] diamond colour centres and quantum dots, with the last being widely studied with efforts from many research groups to realize quantum dots that fluoresce single photons at room temperature with photons in the low loss window of fiber-optic communication. For many purposes single photons need to be anti-bunched, and this can be verified.

Faint laser

One of the first and easiest sources was created by attenuating a conventional laser beam to reduce its intensity and thereby the mean photon number per pulse. [40] Since the photon statistics follow a Poisson distribution one can achieve sources with a well defined probability ratio for the emission of one versus two or more photons. For example, a mean value of μ = 0.1 leads to a probability of 90% for zero photons, 9% for one photon and 1% for more than one photon. [41]

Although such a source can be used for certain applications, it has a second-order intensity correlation function equal to one (no antibunching). For many applications however, antibunching is required, for instance in quantum cryptography.

Heralded single photons

Pairs of single photons can be generated in highly correlated states from using a single high-energy photon to create two lower-energy ones. One photon from the resulting pair may be detected to 'herald' the other (so its state is pretty well known prior to detection as long as the two photon state is separable, otherwise 'heralding' leaves heralded photon in a mixed state [42] ). The two photons need not generally be the same wavelength, but the total energy and resulting polarisation are defined by the generation process. One area of keen interest for such pairs of photons is quantum key distribution.

The heralded single-photon sources are also used to examine the fundamental physics laws in quantum mechanics. There are two commonly used types of heralded single-photon sources: spontaneous parametric down-conversion and spontaneous four-wave mixing. The first source has line-width around THz and the second one has line-width around MHz or narrower. The heralded single photon has been used to demonstrate photonics storage and loading to the optical cavity.

Related Research Articles

This is a timeline of quantum computing.

A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables to explain the behavior of particles like photons and electrons. As of 2015, all Bell tests have found that the hypothesis of local hidden variables is inconsistent with the way that physical systems behave.

<span class="mw-page-title-main">Spontaneous parametric down-conversion</span> Optical process

Spontaneous parametric down-conversion is a nonlinear instant optical process that converts one photon of higher energy, into a pair of photons of lower energy, in accordance with the law of conservation of energy and law of conservation of momentum. It is an important process in quantum optics, for the generation of entangled photon pairs, and of single photons.

In physics, the Hanbury Brown and Twiss (HBT) effect is any of a variety of correlation and anti-correlation effects in the intensities received by two detectors from a beam of particles. HBT effects can generally be attributed to the wave–particle duality of the beam, and the results of a given experiment depend on whether the beam is composed of fermions or bosons. Devices which use the effect are commonly called intensity interferometers and were originally used in astronomy, although they are also heavily used in the field of quantum optics.

<span class="mw-page-title-main">Rydberg atom</span> Excited atomic quantum state with high principal quantum number (n)

A Rydberg atom is an excited atom with one or more electrons that have a very high principal quantum number, n. The higher the value of n, the farther the electron is from the nucleus, on average. Rydberg atoms have a number of peculiar properties including an exaggerated response to electric and magnetic fields, long decay periods and electron wavefunctions that approximate, under some conditions, classical orbits of electrons about the nuclei. The core electrons shield the outer electron from the electric field of the nucleus such that, from a distance, the electric potential looks identical to that experienced by the electron in a hydrogen atom.

An atom interferometer is an interferometer which uses the wave character of atoms. Similar to optical interferometers, atom interferometers measure the difference in phase between atomic matter waves along different paths. Today, atomic interference is typically controlled with laser beams. Atom interferometers have many uses in fundamental physics including measurements of the gravitational constant, the fine-structure constant, the universality of free fall, and have been proposed as a method to detect gravitational waves. They also have applied uses as accelerometers, rotation sensors, and gravity gradiometers.

<span class="mw-page-title-main">Doppler cooling</span> Laser cooling technique

Doppler cooling is a mechanism that can be used to trap and slow the motion of atoms to cool a substance. The term is sometimes used synonymously with laser cooling, though laser cooling includes other techniques.

<span class="mw-page-title-main">Nitrogen-vacancy center</span> Point defect in diamonds

The nitrogen-vacancy center is one of numerous photoluminescent point defects in diamond. Its most explored and useful properties include its spin-dependent photoluminescence, and its relatively long (millisecond) spin coherence at room temperature. The NV center energy levels are modified by magnetic fields, electric fields, temperature, and strain, which allow it to serve as a sensor of a variety of physical phenomena. Its atomic size and spin properties can form the basis for useful quantum sensors. It has also been explored for applications in quantum computing and spintronics.

The Hong–Ou–Mandel effect is a two-photon interference effect in quantum optics that was demonstrated in 1987 by three physicists from the University of Rochester: Chung Ki Hong (홍정기), Zheyu Ou (区泽宇), and Leonard Mandel. The effect occurs when two identical single-photons enter a 1:1 beam splitter, one in each input port. When the temporal overlap of the photons on the beam splitter is perfect, the two photons will always exit the beam splitter together in the same output mode, meaning that there is zero chance that they will exit separately with one photon in each of the two outputs giving a coincidence event. The photons have a 50:50 chance of exiting (together) in either output mode. If they become more distinguishable, the probability of them each going to a different detector will increase. In this way, the interferometer coincidence signal can accurately measure bandwidth, path lengths, and timing. Since this effect relies on the existence of photons and the second quantization it can not be fully explained by classical optics.

In magnetism, a nanomagnet is a nanoscopic scale system that presents spontaneous magnetic order (magnetization) at zero applied magnetic field (remanence).

<span class="mw-page-title-main">Yoshihisa Yamamoto (scientist)</span> Japanese applied physicist (born 1950)

Yoshihisa Yamamoto is the director of Physics & Informatics Laboratories, NTT Research, Inc. He is also Professor (Emeritus) at Stanford University and National Institute of Informatics (Tokyo).

Interatomic Coulombic decay (ICD) is a general, fundamental property of atoms and molecules that have neighbors. Interatomic (intermolecular) Coulombic decay is a very efficient interatomic (intermolecular) relaxation process of an electronically excited atom or molecule embedded in an environment. Without the environment the process cannot take place. Until now it has been mainly demonstrated for atomic and molecular clusters, independently of whether they are of van-der-Waals or hydrogen bonded type.

An optical transistor, also known as an optical switch or a light valve, is a device that switches or amplifies optical signals. Light occurring on an optical transistor's input changes the intensity of light emitted from the transistor's output while output power is supplied by an additional optical source. Since the input signal intensity may be weaker than that of the source, an optical transistor amplifies the optical signal. The device is the optical analog of the electronic transistor that forms the basis of modern electronic devices. Optical transistors provide a means to control light using only light and has applications in optical computing and fiber-optic communication networks. Such technology has the potential to exceed the speed of electronics, while conserving more power. The fastest demonstrated all-optical switching signal is 900 attoseconds, which paves the way to develop ultrafast optical transistors.

Photonic molecules are a form of matter in which photons bind together to form "molecules". They were first predicted in 2007. Photonic molecules are formed when individual (massless) photons "interact with each other so strongly that they act as though they have mass". In an alternative definition, photons confined to two or more coupled optical cavities also reproduce the physics of interacting atomic energy levels, and have been termed as photonic molecules.

<span class="mw-page-title-main">Gerhard Rempe</span> German physicist and professor

Gerhard Rempe is a German physicist, Director at the Max Planck Institute of Quantum Optics and Honorary Professor at the Technical University of Munich. He has performed pioneering experiments in atomic and molecular physics, quantum optics and quantum information processing.

Quantum microscopy allows microscopic properties of matter and quantum particles to be measured and imaged. Various types of microscopy use quantum principles. The first microscope to do so was the scanning tunneling microscope, which paved the way for development of the photoionization microscope and the quantum entanglement microscope.

Jean-Michel Raimond is a French physicist working in the field of quantum mechanics.

Integrated quantum photonics, uses photonic integrated circuits to control photonic quantum states for applications in quantum technologies. As such, integrated quantum photonics provides a promising approach to the miniaturisation and scaling up of optical quantum circuits. The major application of integrated quantum photonics is Quantum technology:, for example quantum computing, quantum communication, quantum simulation, quantum walks and quantum metrology.

A quantum dot single-photon source is based on a single quantum dot placed in an optical cavity. It is an on-demand single-photon source. A laser pulse can excite a pair of carriers known as an exciton in the quantum dot. The decay of a single exciton due to spontaneous emission leads to the emission of a single photon. Due to interactions between excitons, the emission when the quantum dot contains a single exciton is energetically distinct from that when the quantum dot contains more than one exciton. Therefore, a single exciton can be deterministically created by a laser pulse and the quantum dot becomes a nonclassical light source that emits photons one by one and thus shows photon antibunching. The emission of single photons can be proven by measuring the second order intensity correlation function. The spontaneous emission rate of the emitted photons can be enhanced by integrating the quantum dot in an optical cavity. Additionally, the cavity leads to emission in a well-defined optical mode increasing the efficiency of the photon source.

References

  1. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nature Photon 10, 631–641 (2016). https://doi.org/10.1038/nphoton.2016.186
  2. Planck, M. (1900). "Über eine Verbesserung der Wienschen Spektralgleichung". Verhandlungen der Deutschen Physikalischen Gesellschaft . 2: 202–204.
  3. Clauser, John F. (1974). "Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect". Phys. Rev. D. 9 (4): 853–860. Bibcode:1974PhRvD...9..853C. doi:10.1103/physrevd.9.853. S2CID   118320287.
  4. Hanbury Brown, R.; Twiss, R. Q. (1956). "A test of a new type of stellar interferometer on sirius". Nature. 175 (4541): 1046–1048. Bibcode:1956Natur.178.1046H. doi:10.1038/1781046a0. S2CID   38235692.
  5. Kimble, H. J.; Dagenais, M.; Mandel, L. (1977). "Photon Antibunching in Resonance Fluorescence" (PDF). Phys. Rev. Lett. 39 (11): 691–695. Bibcode:1977PhRvL..39..691K. doi:10.1103/physrevlett.39.691.
  6. Diedrich, Frank; Walther, Herbert (1987). "Nonclassical Radiation of a Single Stored Ion". Phys. Rev. Lett. 58 (3): 203–206. Bibcode:1987PhRvL..58..203D. doi:10.1103/physrevlett.58.203. PMID   10034869.
  7. Moerner, W. E.; Kador, L. (22 May 1989). "Optical detection and spectroscopy of single molecules in a solid". Physical Review Letters. 62 (21): 2535–2538. Bibcode:1989PhRvL..62.2535M. doi: 10.1103/PhysRevLett.62.2535 . PMID   10040013.
  8. Orrit, M.; Bernard, J. (1990). "Single Pentacene Molecules Detected by Fluorescence Excitation in a p-Terphenyl Crystal". Phys. Rev. Lett. 65 (21): 2716–2719. Bibcode:1990PhRvL..65.2716O. doi:10.1103/physrevlett.65.2716. PMID   10042674.
  9. Basché, T.; Moerner, W.E.; Orrit, M.; Talon, H. (1992). "Photon antibunching in the fluorescence of a single dye molecule trapped in a solid". Phys. Rev. Lett. 69 (10): 1516–1519. Bibcode:1992PhRvL..69.1516B. doi:10.1103/PhysRevLett.69.1516. PMID   10046242. S2CID   44952356. Archived from the original on June 20, 2017.
  10. Aharonovich, Igor; Englund, Dirk; Toth, Milos (2016). "Solid-state single-photon emitters". Nature Photonics. 10 (10): 631–641. Bibcode:2016NaPho..10..631A. doi:10.1038/nphoton.2016.186. S2CID   43380771.
  11. Castelletto, S.; Johnson, B. C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Ohshima, T. (February 2014). "A silicon carbide room-temperature single-photon source". Nature Materials. 13 (2): 151–156. Bibcode:2014NatMa..13..151C. doi:10.1038/nmat3806. ISSN   1476-1122. PMID   24240243. S2CID   37160386.
  12. Lohrmann, A.; Castelletto, S.; Klein, J. R.; Ohshima, T.; Bosi, M.; Negri, M.; Lau, D. W. M.; Gibson, B. C.; Prawer, S.; McCallum, J. C.; Johnson, B. C. (2016). "Activation and control of visible single defects in 4H-, 6H-, and 3C-SiC by oxidation". Applied Physics Letters. 108 (2): 021107. Bibcode:2016ApPhL.108b1107L. doi:10.1063/1.4939906.
  13. Tran, Toan Trong; Bray, Kerem; Ford, Michael J.; Toth, Milos; Aharonovich, Igor (2016). "Quantum emission from hexagonal boron nitride monolayers". Nature Nanotechnology. 11 (1): 37–41. arXiv: 1504.06521 . Bibcode:2016NatNa..11...37T. doi:10.1038/nnano.2015.242. PMID   26501751. S2CID   9840744.
  14. Kurtsiefer, Christian; Mayer, Sonja; Zarda, Patrick; Weinfurter, Harald (2000). "Stable Solid-State Source of Single Photons". Phys. Rev. Lett. 85 (2): 290–293. Bibcode:2000PhRvL..85..290K. doi:10.1103/physrevlett.85.290. PMID   10991265. S2CID   23862264.
  15. Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W. V.; Petroff, P. M.; Zhang, Lidong; Imamoglu, A. (200). "A Quantum Dot Single-Photon Turnstile Device". Science. 290 (5500): 2282–2285. Bibcode:2000Sci...290.2282M. doi:10.1126/science.290.5500.2282. PMID   11125136.
  16. Jiang, Quanbo; Roy, Prithu; Claude, Jean-Benoît; Wenger, Jérôme (2021-08-25). "Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot". Nano Letters. 21 (16): 7030–7036. arXiv: 2108.06508 . Bibcode:2021NanoL..21.7030J. doi:10.1021/acs.nanolett.1c02449. ISSN   1530-6984. PMID   34398613. S2CID   237091253.
  17. Htoon, Han; Doorn, Stephen K.; Baldwin, Jon K. S.; Hartmann, Nicolai F.; Ma, Xuedan (August 2015). "Room-temperature single-photon generation from solitary dopants of carbon nanotubes". Nature Nanotechnology. 10 (8): 671–675. Bibcode:2015NatNa..10..671M. doi:10.1038/nnano.2015.136. ISSN   1748-3395. PMID   26167766.
  18. He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan; Kim, Younghee; Ihly, Rachelle; Blackburn, Jeffrey L.; Gao, Weilu; Kono, Junichiro; Yomogida, Yohei (September 2017). "Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes". Nature Photonics. 11 (9): 577–582. doi:10.1038/nphoton.2017.119. ISSN   1749-4885. OSTI   1379462. S2CID   36377957.
  19. Tonndorf, Philipp; Schmidt, Robert; Schneider, Robert; Kern, Johannes; Buscema, Michele; Steele, Gary A.; Castellanos-Gomez, Andres; van der Zant, Herre S. J.; Michaelis de Vasconcellos, Steffen (2015-04-20). "Single-photon emission from localized excitons in an atomically thin semiconductor". Optica. 2 (4): 347. Bibcode:2015Optic...2..347T. doi: 10.1364/OPTICA.2.000347 . ISSN   2334-2536.
  20. Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M.; Beams, Ryan; Vamivakas, A. Nick (June 2015). "Voltage-controlled quantum light from an atomically thin semiconductor". Nature Nanotechnology. 10 (6): 507–511. Bibcode:2015NatNa..10..507C. doi:10.1038/nnano.2015.79. ISSN   1748-3387. PMID   25938569.
  21. Palacios-Berraquero, Carmen; Barbone, Matteo; Kara, Dhiren M.; Chen, Xiaolong; Goykhman, Ilya; Yoon, Duhee; Ott, Anna K.; Beitner, Jan; Watanabe, Kenji (December 2016). "Atomically thin quantum light-emitting diodes". Nature Communications. 7 (1): 12978. arXiv: 1603.08795 . Bibcode:2016NatCo...712978P. doi:10.1038/ncomms12978. ISSN   2041-1723. PMC   5052681 . PMID   27667022.
  22. Palacios-Berraquero, Carmen; Kara, Dhiren M.; Montblanch, Alejandro R.-P.; Barbone, Matteo; Latawiec, Pawel; Yoon, Duhee; Ott, Anna K.; Loncar, Marko; Ferrari, Andrea C. (August 2017). "Large-scale quantum-emitter arrays in atomically thin semiconductors". Nature Communications. 8 (1): 15093. arXiv: 1609.04244 . Bibcode:2017NatCo...815093P. doi:10.1038/ncomms15093. ISSN   2041-1723. PMC   5458119 . PMID   28530249.
  23. Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D (August 2017). "Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor". Nature Communications. 8 (1): 15053. arXiv: 1610.01406 . Bibcode:2017NatCo...815053B. doi:10.1038/ncomms15053. ISSN   2041-1723. PMC   5458118 . PMID   28530219.
  24. Wu, Wei; Dass, Chandriker K.; Hendrickson, Joshua R.; Montaño, Raul D.; Fischer, Robert E.; Zhang, Xiaotian; Choudhury, Tanushree H.; Redwing, Joan M.; Wang, Yongqiang (2019-05-27). "Locally defined quantum emission from epitaxial few-layer tungsten diselenide". Applied Physics Letters. 114 (21): 213102. Bibcode:2019ApPhL.114u3102W. doi: 10.1063/1.5091779 . hdl: 10150/634575 . ISSN   0003-6951.
  25. He, Yu-Ming; Clark, Genevieve; Schaibley, John R.; He, Yu; Chen, Ming-Cheng; Wei, Yu-Jia; Ding, Xing; Zhang, Qiang; Yao, Wang (June 2015). "Single quantum emitters in monolayer semiconductors". Nature Nanotechnology. 10 (6): 497–502. arXiv: 1411.2449 . Bibcode:2015NatNa..10..497H. doi:10.1038/nnano.2015.75. ISSN   1748-3387. PMID   25938571. S2CID   205454184.
  26. Birowosuto, M. D.; Sumikura, H.; Matsuo, S.; Taniyama, H.; Veldhoven, P.J.; Notzel, R.; Notomi, M. (2012). "Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling". Sci. Rep. 2: 321. arXiv: 1203.6171 . Bibcode:2012NatSR...2E.321B. doi:10.1038/srep00321. PMC   3307054 . PMID   22432053.
  27. Muller, T.; Skiba-Szymanska, J.; Krysa, A.B.; Huwer, J.; Felle, M.; Anderson, M.; Stevenson, R.M.; Heffernan, J.; Ritchie, D.A.; Shields, A.J. (2018). "A quantum light-emitting diode for the standard telecom window around 1,550 nm". Nat. Commun. 9 (1): 862. arXiv: 1710.03639 . Bibcode:2018NatCo...9..862M. doi:10.1038/s41467-018-03251-7. PMC   5830408 . PMID   29491362.
  28. Pelc, J.S.; Yu, L.; De Greve, K.; McMahon, P.L.; Natarajan, C.M.; Esfandyarpour, V.; Maier, S.; Schneider, C.; Kamp, M.; Shields, A.J.; Höfling, A.J.; Hadfield, R.; Forschel, A.; Yamamoto, Y. (2012). "Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel". Opt. Express. 20 (25): 27510–9. arXiv: 1209.6404 . Bibcode:2012OExpr..2027510P. doi:10.1364/OE.20.027510. PMID   23262701. S2CID   847645.
  29. Dudin, Y. O.; Kuzmich, A. (2012-05-18). "Strongly Interacting Rydberg Excitations of a Cold Atomic Gas". Science. 336 (6083): 887–889. Bibcode:2012Sci...336..887D. doi: 10.1126/science.1217901 . ISSN   0036-8075. PMID   22517325. S2CID   206539415.
  30. Ripka, Fabian; Kübler, Harald; Löw, Robert; Pfau, Tilman (2018-10-26). "A room-temperature single-photon source based on strongly interacting Rydberg atoms". Science. 362 (6413): 446–449. arXiv: 1806.02120 . Bibcode:2018Sci...362..446R. doi:10.1126/science.aau1949. ISSN   0036-8075. PMID   30361371. S2CID   53088432.
  31. Khazali, Mohammadsadegh; Heshami, Khabat; Simon, Christoph (2017-10-23). "Single-photon source based on Rydberg exciton blockade". Journal of Physics B: Atomic, Molecular and Optical Physics. 50 (21): 215301. arXiv: 1702.01213 . Bibcode:2017JPhB...50u5301K. doi:10.1088/1361-6455/aa8d7c. ISSN   0953-4075. S2CID   118910311.
  32. Scully, Marlan O. (1997). Quantum optics. Zubairy, Muhammad Suhail, 1952-. Cambridge: Cambridge University Press. ISBN   9780521435956. OCLC   817937365.
  33. Eisaman, M. D.; Fan, J.; Migdall, A.; Polyakov, S. V. (2011-07-01). "Invited Review Article: Single-photon sources and detectors". Review of Scientific Instruments. 82 (7): 071101–071101–25. Bibcode:2011RScI...82g1101E. doi: 10.1063/1.3610677 . ISSN   0034-6748. PMID   21806165.
  34. Eisaman, M. D.; Fan, J.; Migdall, A.; Polyakov, S. V. (2011-07-01). "Invited Review Article: Single-photon sources and detectors". Review of Scientific Instruments. 82 (7): 071101–071101–25. Bibcode:2011RScI...82g1101E. doi: 10.1063/1.3610677 . ISSN   0034-6748. PMID   21806165.
  35. Birowosuto, M.; et al. (2014). "Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform". Nature Materials. 13 (3): 279–285. arXiv: 1403.4237 . Bibcode:2014NatMa..13..279B. doi:10.1038/nmat3873. PMID   24553654. S2CID   21333714.
  36. Diguna, L., Birowosuto, M; et al. (2018). "Light–matter interaction of single quantum emitters with dielectric nanostructures". Photonics. 5 (2): 14. Bibcode:2018Photo...5...14D. doi: 10.3390/photonics5020014 . hdl: 10220/45525 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. Meter, R.V.; Touch, J. (2013). "Designing quantum repeater networks". IEEE Communications Magazine. 51 (8): 64–71. doi:10.1109/mcom.2013.6576340. S2CID   27978069.
  38. Dudin, Y. O.; Kuzmich, A. (2012-04-19). "Strongly Interacting Rydberg Excitations of a Cold Atomic Gas". Science. 336 (6083): 887–889. Bibcode:2012Sci...336..887D. doi: 10.1126/science.1217901 . ISSN   0036-8075. PMID   22517325. S2CID   206539415.
  39. Ripka, Fabian; Kübler, Harald; Löw, Robert; Pfau, Tilman (2018-10-25). "A room-temperature single-photon source based on strongly interacting Rydberg atoms". Science. 362 (6413): 446–449. arXiv: 1806.02120 . Bibcode:2018Sci...362..446R. doi:10.1126/science.aau1949. ISSN   0036-8075. PMID   30361371. S2CID   53088432.
  40. Eisaman, M. D.; Fan, J.; Migdall, A.; Polyakov, S. V. (2011-07-01). "Invited Review Article: Single-photon sources and detectors". Review of Scientific Instruments. 82 (7): 071101–071101–25. Bibcode:2011RScI...82g1101E. doi: 10.1063/1.3610677 . ISSN   0034-6748. PMID   21806165.
  41. Al-Kathiri, S.; Al-Khateeb, W.; Hafizulfika, M.; Wahiddin, M. R.; Saharudin, S. (May 2008). "Characterization of mean photon number for key distribution system using faint laser". 2008 International Conference on Computer and Communication Engineering. pp. 1237–1242. doi:10.1109/ICCCE.2008.4580803. ISBN   978-1-4244-1691-2. S2CID   18300454.
  42. Mosley, Peter J.; Lundeen, Jeff S.; Smith, Brian J.; Wasylczyk, Piotr; U’Ren, Alfred B.; Silberhorn, Christine; Walmsley, Ian A. (2008-04-03). "Heralded Generation of Ultrafast Single Photons in Pure Quantum States". Physical Review Letters. 100 (13): 133601. arXiv: 0711.1054 . Bibcode:2008PhRvL.100m3601M. doi:10.1103/PhysRevLett.100.133601. ISSN   0031-9007. PMID   18517952. S2CID   21174398.

Bibliography