Spectral color

Last updated

A rainbow is a decomposition of white light into all of the spectral colors. WhereRainbowRises.jpg
A rainbow is a decomposition of white light into all of the spectral colors.
Laser beams are monochromatic light, thereby exhibiting spectral colors. Laser Pointer.jpg
Laser beams are monochromatic light, thereby exhibiting spectral colors.

A spectral color is a color that is evoked by monochromatic light, i.e. either a spectral line with a single wavelength or frequency of light in the visible spectrum, or a relatively narrow spectral band (e.g. lasers). Every wave of visible light is perceived as a spectral color; when viewed as a continuous spectrum, these colors are seen as the familiar rainbow. Non-spectral colors (or extra-spectral colors) are evoked by a combination of spectral colors.

Contents

In color spaces

CIE xy chromaticity diagram
The spectrum colors are the colors on the horseshoe-shaped curve on the outside of the diagram. All other colors are not spectral: the bottom line is the line of purples, whilst within the interior of the diagram are unsaturated colors that are various mixtures of a spectral color or a purple color with white, a grayscale color. White is in the central part of the interior of the diagram, since when all colors of light are mixed together, they produce white. CIE1931xy blank.svg
The spectrum colors are the colors on the horseshoe-shaped curve on the outside of the diagram. All other colors are not spectral: the bottom line is the line of purples , whilst within the interior of the diagram are unsaturated colors that are various mixtures of a spectral color or a purple color with white, a grayscale color. White is in the central part of the interior of the diagram, since when all colors of light are mixed together, they produce white.

In color spaces which include all, or most spectral colors, they form a part of boundary of the set of all real colors. When considering a three-dimensional color space (which includes luminance), the spectral colors form a surface. When excluding luminance and considering a two-dimensional color space (chromaticity diagram), the spectral colors form a curve known as the spectral locus. For example, the spectral locus of the CIEXYZ chromaticity diagram contains all the spectral colors (to the eye of the standard observer).

A trichromatic color space is defined by three primary colors, which can theoretically be spectral colors. In this case, all other colors are inherently non-spectral. In reality, the spectral bandwidth of most primaries means that most color spaces are entirely non-spectral. Due to different chromaticity properties of different spectral segments, and also due to practical limitations of light sources, the actual distance between RGB pure color wheel colors and spectral colors shows a complicated dependence on the hue. Due to the location of R and G primaries near the 'almost flat' spectral segment, RGB color space is reasonably good with approximating spectral orange, yellow, and bright (yellowish) green, but is especially poor in reproducing the visual appearance of spectral colors in the vicinity of central green, and between green and blue, as well as extreme spectral colors approaching IR or UV.

Spectral colors are universally included in scientific color models such as CIE 1931, but industrial and consumer color spaces such as sRGB, CMYK, and Pantone, do not typically include any spectral colors. Exceptions include Rec. 2020, which uses three spectral colors as primaries (and therefore only includes precisely those three spectral colors), and color spaces such as the ProPhoto RGB color space which use imaginary colors as primaries.

In color models capable of representing spectral colors, [note 1] [1] such as CIELUV, a spectral color has the maximal saturation. In Helmholtz coordinates, this is described as 100% purity.

In dichromatic color spaces

In dichromatic color vision there is no distinction between spectral and non-spectral colors. Their entire gamut can be represented by spectral colors. [note 2]

Spectral color terms

The spectrum is often divided into color terms or names, but aligning boundaries between color terms to a specific wavelength is very subjective.

The first person to decompose white light and name the spectral colors was Isaac Newton. Early in the study of radiometry, Newton was not able to measure the wavelength of the light, but his experiments were repeated contemporarily to estimate wavelengths where his color term boundaries probably lay. [2] Newton's color terms included red, orange, yellow, green, blue, indigo, and violet; this color sequence is still used to describe spectral colors colloquially and a mnemonic for it is commonly known as "Roy G. Biv".

In modern divisions of the spectrum, indigo is often omitted and a blue-green color is sometimes included. Some have argued that Newton's indigo would be equivalent to our modern blue, and his blue equivalent to our blue-green. However, his nonintuitive choices can be better explained. In the table below, note how wavelength is not proportional to hue (which is approximately perceptually uniform). Color systems such as ISCC-NBS attempt to divide the spectrum into sections that appear perceptually uniform. On the other hand, Newton's sections are approximately uniform in size as they would have physically appeared in the diffracted spectrum, i.e. each about 40nm "wide". In this theory, the sections were divided without influence of his own perception, and each section was then given a name that best suited its average color. In contrast, the sections in the ISCC-NBS spectrum vary greatly in wavelength range, but are more consistent in the hue degree range. Both instances deviate from the basic color terms used in English, only some of which are spectral colors.

The table below includes several definitions where the spectral colors have been categorized in color terms. The hue that a given monochromatic light evokes is approximated at the right side of the table.

Spectral color classifications
nm Newton * [2] ISCC-NBS * [3] Malacara [4] CRC Handbook [5] Hue *
380VioletVioletVioletViolet250°
390250°
400250°
410249°
420249°
430IndigoBlue249°
440Blue247°
450BlueBlue245°
460242°
470238°
480226°
490GreenBlue-Green190°
500GreenCyanGreen143°
510126°
520Green122°
530Yellow117°
540113°
550Yellow-Green104°
56093°
570YellowYellow62°
580OrangeYellowOrange28°
590OrangeOrange14°
600
610Red
620RedRed
630Red
640
650
660
670
680
690
700
710
720
730
740
750

Extra-spectral colors

Among some of the colors that are not spectral colors are:

Notes

  1. The HSL and HSV systems do not qualify, because many spectral colors lie rather far from their gamut.
  2. This is true for dichromats with photoreceptor cells with overlapping spectral sensitivity curves. If the spectral sensitivity curves do not overlap, then all colors except for the extremes (where one of the cones is not excited) would be non-spectral. However, there are no known vision systems where the cones' spectral sensitivity curves do not overlap.

Related Research Articles

<span class="mw-page-title-main">Color</span> Visual perception of the light spectrum

Color or colour is the visual perception based on the electromagnetic spectrum. Though color is not an inherent property of matter, color perception is related to an object's light absorption, reflection, emission spectra and interference. For most humans, colors are perceived in the visible light spectrum with three types of cone cells (trichromacy). Other animals may have a different number of cone cell types or have eyes sensitive to different wavelength, such as bees that can distinguish ultraviolet, and thus have a different color sensitivity range. Animal perception of color originates from different light wavelength or spectral sensitivity in cone cell types, which is then processed by the brain.

<span class="mw-page-title-main">Indigo</span> Shade of blue

Indigo is a term used for a number of hues in the region of blue. The word comes from the ancient dye of the same name. The term "indigo" can refer to the color of the dye, various colors of fabric dyed with indigo dye, a spectral color, one of the seven colors of the rainbow, or a region on the color wheel, and can include various shades of blue, ultramarine, and green-blue. Since the web era, the term has also been used for various purple and violet hues identified as "indigo", based on use of the term "indigo" in HTML web page specifications.

<span class="mw-page-title-main">RGB color model</span> Color model based on red, green, and blue

The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

<span class="mw-page-title-main">Visible spectrum</span> Portion of the electromagnetic spectrum that is visible to the human eye

The visible spectrum is the band of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called visible light. The optical spectrum is sometimes considered to be the same as the visible spectrum, but some authors define the term more broadly, to include the ultraviolet and infrared parts of the electromagnetic spectrum as well.

<span class="mw-page-title-main">Primary color</span> Sets of colors that can be mixed to produce gamut of colors

A set of primary colors or primary colours consists of colorants or colored lights that can be mixed in varying amounts to produce a gamut of colors. This is the essential method used to create the perception of a broad range of colors in, e.g., electronic displays, color printing, and paintings. Perceptions associated with a given combination of primary colors can be predicted by an appropriate mixing model that reflects the physics of how light interacts with physical media, and ultimately the retina.

<span class="mw-page-title-main">Magenta</span> Color

Magenta is a purplish-red color. On color wheels of the RGB (additive) and CMY (subtractive) color models, it is located precisely midway between red and blue. It is one of the four colors of ink used in color printing by an inkjet printer, along with yellow, cyan, and black to make all the other colors. The tone of magenta used in printing, printer's magenta, is redder than the magenta of the RGB (additive) model, the former being closer to rose.

<span class="mw-page-title-main">Hue</span> Property of a color

In color theory, hue is one of the main properties of a color, defined technically in the CIECAM02 model as "the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, orange, yellow, green, blue, violet," within certain theories of color vision.

<span class="mw-page-title-main">Color vision</span> Ability to perceive differences in light frequency

Color vision, a feature of visual perception, is an ability to perceive differences between light composed of different frequencies independently of light intensity. Color perception is a part of the larger visual system and is mediated by a complex process between neurons that begins with differential stimulation of different types of photoreceptors by light entering the eye. Those photoreceptors then emit outputs that are propagated through many layers of neurons and then ultimately to the brain. Color vision is found in many animals and is mediated by similar underlying mechanisms with common types of biological molecules and a complex history of evolution in different animal taxa. In primates, color vision may have evolved under selective pressure for a variety of visual tasks including the foraging for nutritious young leaves, ripe fruit, and flowers, as well as detecting predator camouflage and emotional states in other primates.

<span class="mw-page-title-main">Gamut</span> Color reproduction capability

In color reproduction, including computer graphics and photography, the gamut, or color gamut, is a certain complete subset of colors. The most common usage refers to the subset of colors that can be accurately represented in a given circumstance, such as within a given color space or by a certain output device.

In the visual arts, color theory is the body of practical guidance for color mixing and the visual effects of a specific color combination. Color terminology based on the color wheel and its geometry separates colors into primary color, secondary color, and tertiary color. The understanding of color theory dates to antiquity. Aristotle and Claudius Ptolemy already discussed which and how colors can be produced by mixing other colors. The influence of light on color was investigated and revealed further by al-Kindi and Ibn al-Haytham (d.1039). Ibn Sina, Nasir al-Din al-Tusi, and Robert Grosseteste discovered that contrary to the teachings of Aristotle, there are multiple color paths to get from black to white. More modern approaches to color theory principles can be found in the writings of Leone Battista Alberti and the notebooks of Leonardo da Vinci. A formalization of "color theory" began in the 18th century, initially within a partisan controversy over Isaac Newton's theory of color and the nature of primary colors. From there it developed as an independent artistic tradition with only superficial reference to colorimetry and vision science.

<span class="mw-page-title-main">Color wheel</span> Illustrative organization of color hues

A color wheel or color circle is an abstract illustrative organization of color hues around a circle, which shows the relationships between primary colors, secondary colors, tertiary colors etc.

A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components. When this model is associated with a precise description of how the components are to be interpreted, taking account of visual perception, the resulting set of colors is called "color space."

<span class="mw-page-title-main">CIE 1931 color space</span> Color space defined by the CIE in 1931

The CIE 1931 color spaces are the first defined quantitative links between distributions of wavelengths in the electromagnetic visible spectrum, and physiologically perceived colors in human color vision. The mathematical relationships that define these color spaces are essential tools for color management, important when dealing with color inks, illuminated displays, and recording devices such as digital cameras. The system was designed in 1931 by the "Commission Internationale de l'éclairage", known in English as the International Commission on Illumination.

<span class="mw-page-title-main">Abney effect</span> Perceived hue shift when white light is added to a monochromatic light source

The Abney effect or the purity-on-hue effect describes the perceived hue shift that occurs when white light is added to a monochromatic light source.

Relative luminance follows the photometric definition of luminance including spectral weighting for human vision, but while luminance is a measure of light in units such as , Relative luminance values are normalized as 0.0 to 1.0, with 1.0 being a theoretical perfect reflector of 100% reference white. Like the photometric definition, it is related to the luminous flux density in a particular direction, which is radiant flux density weighted by the luminous efficiency function y(λ) of the CIE Standard Observer.

<span class="mw-page-title-main">Line of purples</span> Edge of visible color

In color theory, the line of purples or purple boundary is the locus on the edge of the chromaticity diagram formed between extreme spectral red and violet. Except for these endpoints of the line, colors on the line are non-spectral. Rather, every color on the line is a unique mixture in a ratio of fully saturated red and fully saturated violet, the two spectral color endpoints of visibility on the spectrum of pure hues. Colors on the line and spectral colors are the only ones that are fully saturated in the sense that, for any point on the line, no other possible color being a mixture of red and violet is more saturated than it.

<span class="mw-page-title-main">Impossible color</span> Color that cannot be perceived under ordinary viewing conditions

Impossible colors are colors that do not appear in ordinary visual functioning. Different color theories suggest different hypothetical colors that humans are incapable of perceiving for one reason or another, and fictional colors are routinely created in popular culture. While some such colors have no basis in reality, phenomena such as cone cell fatigue enable colors to be perceived in certain circumstances that would not be otherwise.

<span class="mw-page-title-main">Unique hues</span> Pure blue, green, yellow or red hues that cannot be described as a mixture of other hues

Unique hue is a term used in perceptual psychology of color vision and generally applied to the purest hues of blue, green, yellow and red. The proponents of the opponent process theory believe that these hues cannot be described as a mixture of other hues, and are therefore pure, whereas all other hues are composite. The neural correlate of the unique hues are approximated by the extremes of the opponent channels in opponent process theory. In this context, unique hues are sometimes described as "psychological primaries" as they can be considered analogous to the primary colors of trichromatic color theory.

<span class="mw-page-title-main">Shades of violet</span> Varieties of the color violet

Violet is a color term derived from the flower of the same name. There are numerous variations of the color violet, a sampling of which are shown below.

References

  1. "Perceiving Color" (PDF). courses.washington.edu.
  2. 1 2 McLaren, K. (1985). "Newton's indigo". Color Research & Application. 10 (4): 225–229. doi:10.1002/col.5080100411.
  3. Kelly, Kenneth L. (November 1, 1943). "Color Designations for Lights". Journal of the Optical Society of America. 33 (11): 627. doi:10.1364/JOSA.33.000627.
  4. Malacara, Daniel (2011). Color vision and colorimetry : theory and applications (2nd ed.). Bellingham, Wash.: SPIE. ISBN   9780819483973.
  5. Bruno, Thomas J. (2006). CRC handbook of fundamental spectroscopic correlation charts. Boca Raton, FL: CRC Press. ISBN   9780849332500.