Impossible color

Last updated

The human eye's red-to-green and blue-to-yellow values of each one-wavelength visible color Color perception.svg
The human eye's red-to-green and blue-to-yellow values of each one-wavelength visible color
Human color sensation is defined by the sensitivity curves (shown here normalized) of the three kinds of cone cells: respectively the short-, medium- and long-wavelength types. Cones SMJ2 E.svg
Human color sensation is defined by the sensitivity curves (shown here normalized) of the three kinds of cone cells: respectively the short-, medium- and long-wavelength types.

Impossible colors are colors that do not appear in ordinary visual functioning. Different color theories suggest different hypothetical colors that humans are incapable of perceiving for one reason or another, and fictional colors are routinely created in popular culture. While some such colors have no basis in reality, phenomena such as cone cell fatigue enable colors to be perceived in certain circumstances that would not be otherwise.

Contents

Opponent process

The color opponent process is a color theory that states that the human visual system interprets information about color by processing signals from cone and rod cells in an antagonistic manner. The three types of cone cells have some overlap in the wavelengths of light to which they respond, so it is more efficient for the visual system to record differences between the responses of cones, rather than each type of cone's individual response. The opponent color theory suggests that there are three opponent channels:

Responses to one color of an opponent channel are antagonistic to those to the other color, and signals output from a place on the retina can contain one or the other but not both, for each opponent pair.

Imaginary colors

CIExy1931.png
The CIE 1931 color space chromaticity diagram. The white regions outside the black line correspond to imaginary colors. (The colors in this figure do not reproduce the actual colors in the diagram, due to the limitations of RGB computer displays.)
CIExy1931 ProPhoto.svg
The ProPhoto RGB color space uses fictitious green and blue primaries to obtain a broader gamut (space inside the triangle) than would be possible with three realistic primaries. However, some realistic colors still cannot be rendered using the colorants that are available.

A fictitious color or imaginary color is a point in a color space that corresponds to combinations of cone cell responses in one eye that cannot be produced by the eye in normal circumstances seeing any possible light spectrum. [1] No physical object can have an imaginary color.

The spectral sensitivity curve of medium-wavelength ("M") cone cells overlaps those of short-wavelength ("S") and long-wavelength ("L") cone cells. Light of any wavelength that interacts with M cones also interacts with S or L cones, or both, to some extent. Therefore, no wavelength and no spectral power distribution excites only one sort of cone. If, for example, M cones could be excited alone, this would make the brain see an imaginary color greener than any physically possible green. Such a "hyper-green" color would be in the CIE 1931 color space chromaticity diagram in the blank area above the colored area and between the y-axis and the line x+y=1.[ citation needed ]

Imaginary colors in color spaces

Although they cannot be seen, imaginary colors are often found in the mathematical descriptions that define color spaces. [2]

Any additive mixture of two real colors is also a real color. When colors are displayed in the CIE 1931 XYZ color space, additive mixture results in color along the line between the colors being mixed. By mixing any three colors, one can therefore create any color contained in the triangle they describe—this is called the gamut formed by those three colors, which are called primary colors. Any colors outside of this triangle cannot be obtained by mixing the chosen primaries.

When defining primaries, the goal is often to leave as many real colors in gamut as possible. Since the region of real colors is not a triangle (see illustration), it is not possible to pick three real colors that span the whole region. The gamut can be increased by selecting more than three real primary colors, but since the region of real colors is bounded by a smooth curve, there will always be some colors near its edges that are left out. For this reason, primary colors are often chosen that are outside of the region of real colors—that is, imaginary or fictitious primary colors—in order to capture the greatest area of real colors.

In computer and television screen color displays, the corners of the gamut triangle are defined by commercially available phosphors chosen to be as near as possible to pure red, green, and blue, within the area of real colors. Because of this, these displays inevitably exhibit colors nearest to real colors lying within its gamut triangle, rather than exact matches to real colors that plot outside of it. The specific gamuts available to commercial display devices vary by manufacturer and model and are often defined as part of international standards—for example, the gamut of chromaticities defined by sRGB color space was developed into a standard (IEC 61966-2-1:1999 [3] ) by the International Electrotechnical Commission.

Chimerical colors

By staring at a "fatigue template" for 20-60 seconds, then switching to a neutral target, it is possible to view "impossible" colors. Chimerical-color-demo.svg
By staring at a "fatigue template" for 20–60 seconds, then switching to a neutral target, it is possible to view "impossible" colors.

A chimerical color is an imaginary color that can be seen temporarily by looking steadily at a strong color until some of the cone cells become fatigued, temporarily changing their color sensitivities, and then looking at a markedly different color. The direct trichromatic description of vision cannot explain these colors, which can involve saturation signals outside the physical gamut imposed by the trichromatic model. Opponent process color theories, which treat intensity and chroma as separate visual signals, provide a biophysical explanation of these chimerical colors. [4] For example, staring at a saturated primary-color field and then looking at a white object results in an opposing shift in hue, causing an afterimage of the complementary color. Exploration of the color space outside the range of "real colors" by this means is major corroborating evidence for the opponent-process theory of color vision. Chimerical colors can be seen while seeing with one eye or with both eyes, and are not observed to reproduce simultaneously qualities of opposing colors (e.g. "yellowish blue"). [4] Chimerical colors include:

Stygian colors
These are simultaneously dark and impossibly saturated. For example, to see "stygian blue": staring at bright yellow causes a dark blue afterimage, then on looking at black, the blue is seen as blue against the black, also as dark as the black. The color is not possible to achieve through normal vision, because the lack of incident light (in the black) prevents saturation of the blue/yellow chromatic signal (the blue appearance).
Self-luminous colors
These mimic the effect of glowing material, even when viewed on a medium such as paper, which can only reflect and not emit its own light. For example, to see "self-luminous red": staring at green causes a red afterimage, then on looking at white, the red is seen against the white and may seem to be brighter than the white.
Hyperbolic colors
These are impossibly highly saturated. For example, to see "hyperbolic orange": staring at bright cyan causes an orange afterimage, then on looking at orange, the resulting orange afterimage seen against the orange background may cause an orange color purer than the purest orange color that can be made by any normally seen light.

Colors outside physical color space

Some people may be able to see the color "yellow-blue" in this image by letting their eyes cross so that both + symbols are on top of each other. In this image, both RGB and Natural Color System color pairs are provided. It may be necessary to zoom to adjust the image. Impossible colors, NCS and RGB yellow and blue.svg
Some people may be able to see the color "yellow–blue" in this image by letting their eyes cross so that both + symbols are on top of each other. In this image, both RGB and Natural Color System color pairs are provided. It may be necessary to zoom to adjust the image.
Some people may be able to see the color "red-green" in this image by letting their eyes cross so that both + symbols are on top of each other. In this image, both RGB and Natural Color System color pairs are provided. It may be necessary to zoom to adjust the image. Impossible colors, NCS and RGB red and green.svg
Some people may be able to see the color "red-green" in this image by letting their eyes cross so that both + symbols are on top of each other. In this image, both RGB and Natural Color System color pairs are provided. It may be necessary to zoom to adjust the image.
Most people see very bright colored concentric circles in this pattern, if it is printed and rotated at around 150-300 rpm. Alternate version with inverse contrast yields opposite effect. Wb to colours when rotating.svg
Most people see very bright colored concentric circles in this pattern, if it is printed and rotated at around 150–300 rpm. Alternate version with inverse contrast yields opposite effect.

According to the opponent-process theory, under normal circumstances, there is no hue that could be described as a mixture of opponent hues; that is, as a hue looking "redgreen" or "yellowblue".

In 1983, Hewitt D. Crane and Thomas P. Piantanida performed tests using an eye-tracker device that had a field of a vertical red stripe adjacent to a vertical green stripe, or several narrow alternating red and green stripes (or in some cases, yellow and blue instead). The device could track involuntary movements of one eye (there was a patch over the other eye) and adjust mirrors so the image would follow the eye and the boundaries of the stripes were always on the same places on the eye's retina; the field outside the stripes was blanked with occluders. Under such conditions, the edges between the stripes seemed to disappear (perhaps due to edge-detecting neurons becoming fatigued) and the colors flowed into each other in the brain's visual cortex, overriding the opponency mechanisms and producing not the color expected from mixing paints or from mixing lights on a screen, but new colors entirely, which are not in the CIE 1931 color space, either in its real part or in its imaginary parts. For red-and-green, some saw an even field of the new color; some saw a regular pattern of just-visible green dots and red dots; some saw islands of one color on a background of the other color. Some of the volunteers for the experiment reported that afterward, they could still imagine the new colors for a period of time. [5]

Some observers indicated that although they were aware that what they were viewing was a color (that is, the field was not achromatic), they were unable to name or describe the color. One of these observers was an artist with large color vocabulary. Other observers of the novel hues described the first stimulus as a reddish-green. [6]

In 2001, Vincent A. Billock and Gerald A. Gleason and Brian H. Tsou set up an experiment to test a theory that the 1983 experiment did not control for variations in the perceived luminance of the colors from subject to subject: two colors are equiluminant for an observer when rapidly alternating between the colors produces the least impression of flickering. The 2001 experiment was similar but controlled for luminance. [7] They had these observations:

Some subjects (4 out of 7) described transparency phenomena—as though the opponent colors originated in two depth planes and could be seen, one through the other. ...

We found that when colors were equiluminant, subjects saw reddish greens, bluish yellows, or a multistable spatial color exchange (an entirely novel perceptual phenomena [ sic ]); when the colors were nonequiluminant, subjects saw spurious pattern formation.

This led them to propose a "soft-wired model of cortical color opponency", in which populations of neurons compete to fire and in which the "losing" neurons go completely silent. In this model, eliminating competition by, for instance, inhibiting connections between neural populations can allow mutually exclusive neurons to fire together. [7]

Hsieh and Tse in 2006 disputed the existence of colors forbidden by opponency theory and claimed they are, in reality, intermediate colors. However, by their own account their methods differed from Crane and Piantanida: "They stabilized the border between two colors on the retina using an eye tracker linked to deflector mirrors, whereas we relied on visual fixation." Hsieh and Tse do not compare their methods to Billock and Tsou, and do not cite their work, even though it was published five years earlier in 2001. [8] See also binocular rivalry.

In fiction

Some works of fiction have mentioned fictional colors outside of the normal human visual spectrum that have not been observed yet and whose observation may require advanced technology, different physics, or magic. [9] [10] [11] Introduction of a new color is often an allegory intending to deliver additional information to the reader. [12] Such colors are primarily discussed in literary works, as they are currently impossible to visualize (when a new color is shown in the episode "Reincarnation" of the animated show Futurama , the animation for that segment of the show is purposely kept in shades of gray [13] ).

See also

Related Research Articles

<span class="mw-page-title-main">Color</span> Visual perception of the light spectrum

Color or colour is the visual perception based on the electromagnetic spectrum. Though color is not an inherent property of matter, color perception is related to an object's light absorption, reflection, emission spectra, and interference. For most humans, colors are perceived in the visible light spectrum with three types of cone cells (trichromacy). Other animals may have a different number of cone cell types or have eyes sensitive to different wavelengths, such as bees that can distinguish ultraviolet, and thus have a different color sensitivity range. Animal perception of color originates from different light wavelength or spectral sensitivity in cone cell types, which is then processed by the brain.

<span class="mw-page-title-main">Color blindness</span> Decreased ability to see color or color differences

Color blindness or color vision deficiency (CVD) is the decreased ability to see color or differences in color. The severity of color blindness ranges from mostly unnoticeable to full absence of color perception. Color blindness is usually an inherited problem or variation in the functionality of one or more of the three classes of cone cells in the retina, which mediate color vision. The most common form is caused by a genetic condition called congenital red–green color blindness, which affects up to 1 in 12 males (8%) and 1 in 200 females (0.5%). The condition is more prevalent in males, because the opsin genes responsible are located on the X chromosome. Rarer genetic conditions causing color blindness include congenital blue–yellow color blindness, blue cone monochromacy, and achromatopsia. Color blindness can also result from physical or chemical damage to the eye, the optic nerve, parts of the brain, or from medication toxicity. Color vision also naturally degrades in old age.

<span class="mw-page-title-main">RGB color model</span> Color model based on red, green, and blue

The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

<span class="mw-page-title-main">Primary color</span> Fundamental color in color mixing

A set of primary colors or primary colours consists of colorants or colored lights that can be mixed in varying amounts to produce a gamut of colors. This is the essential method used to create the perception of a broad range of colors in, e.g., electronic displays, color printing, and paintings. Perceptions associated with a given combination of primary colors can be predicted by an appropriate mixing model that reflects the physics of how light interacts with physical media, and ultimately the retina. The most common color mixing models are the additive primary colors and the subtractive primary colors. Red, yellow and blue are also commonly taught as primary colours, despite some criticism due to its lack of scientific basis.

<span class="mw-page-title-main">RGB color spaces</span> Any additive color space based on the RGB color model

RGB color spaces is a category of additive colorimetric color spaces specifying part of its absolute color space definition using the RGB color model.

<span class="mw-page-title-main">Color vision</span> Ability to perceive differences in light frequency

Color vision, a feature of visual perception, is an ability to perceive differences between light composed of different frequencies independently of light intensity.

<span class="mw-page-title-main">Complementary colors</span> Pairs of colors losing hue when combined

Complementary colors are pairs of colors which, when combined or mixed, cancel each other out by producing a grayscale color like white or black. When placed next to each other, they create the strongest contrast for those two colors. Complementary colors may also be called "opposite colors".

Color theory, or more specifically traditional color theory, is the historical body of knowledge describing the behavior of colors, namely in color mixing, color contrast effects, color harmony, color schemes and color symbolism. Modern color theory is generally referred to as Color science. While there is no clear distinction in scope, traditional color theory tends to be more subjective and have artistic applications, while color science tends to be more objective and have functional applications, such as in chemistry, astronomy or color reproduction. Color theory dates back at least as far as Aristotle's treatise On Colors. A formalization of "color theory" began in the 18th century, initially within a partisan controversy over Isaac Newton's theory of color and the nature of primary colors. By the end of the 19th century, a schism had formed between traditional color theory and color science.

<span class="mw-page-title-main">Tetrachromacy</span> Type of color vision with four types of cone cells

Tetrachromacy is the condition of possessing four independent channels for conveying color information, or possessing four types of cone cell in the eye. Organisms with tetrachromacy are called tetrachromats.

<span class="mw-page-title-main">Afterimage</span> Image that continues to appear in the eyes after a period of exposure to the original image

An afterimage is an image that continues to appear in the eyes after a period of exposure to the original image. An afterimage may be a normal phenomenon or may be pathological (palinopsia). Illusory palinopsia may be a pathological exaggeration of physiological afterimages. Afterimages occur because photochemical activity in the retina continues even when the eyes are no longer experiencing the original stimulus.

<span class="mw-page-title-main">Cone cell</span> Photoreceptor cells responsible for color vision made to function in bright light

Cone cells or cones are photoreceptor cells in the retinas of vertebrates' eyes. They respond differently to light of different wavelengths, and the combination of their responses is responsible for color vision. Cones function best in relatively bright light, called the photopic region, as opposed to rod cells, which work better in dim light, or the scotopic region. Cone cells are densely packed in the fovea centralis, a 0.3 mm diameter rod-free area with very thin, densely packed cones which quickly reduce in number towards the periphery of the retina. Conversely, they are absent from the optic disc, contributing to the blind spot. There are about six to seven million cones in a human eye, with the highest concentration being towards the macula.

Dichromacy is the state of having two types of functioning photoreceptors, called cone cells, in the eyes. Organisms with dichromacy are called dichromats. Dichromats require only two primary colors to be able to represent their visible gamut. By comparison, trichromats need three primary colors, and tetrachromats need four. Likewise, every color in a dichromat's gamut can be evoked with monochromatic light. By comparison, every color in a trichromat's gamut can be evoked with a combination of monochromatic light and white light.

<span class="mw-page-title-main">Spectral color</span> Color evoked by a single wavelength of light in the visible spectrum

A spectral color is a color that is evoked by monochromatic light, i.e. either a spectral line with a single wavelength or frequency of light in the visible spectrum, or a relatively narrow spectral band. Every wave of visible light is perceived as a spectral color; when viewed as a continuous spectrum, these colors are seen as the familiar rainbow. Non-spectral colors are evoked by a combination of spectral colors.

The opponent process is a color theory that states that the human visual system interprets information about color by processing signals from photoreceptor cells in an antagonistic manner. The opponent-process theory suggests that there are three opponent channels, each comprising an opposing color pair: red versus green, blue versus yellow, and black versus white (luminance). The theory was first proposed in 1892 by the German physiologist Ewald Hering.

In color science, a color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components. When this model is associated with a precise description of how the components are to be interpreted, taking account of visual perception, the resulting set of colors is called "color space."

<span class="mw-page-title-main">CIE 1931 color space</span> Color space defined by the CIE in 1931

In 1931 the International Commission on Illumination (CIE) published the CIE 1931 color spaces which define the relationship between the visible spectrum and the visual sensation of specific colors by human color vision. The CIE color spaces are mathematical models that create a "standard observer", which attempts to predict the perception of unique hues of color. These color spaces are essential tools that provide the foundation for measuring color for industry, including inks, dyes, and paints, illumination, color imaging, etc. The CIE color spaces contributed to the development of color television, the creation of instruments for maintaining consistent color in manufacturing processes, and other methods of color management.

<span class="mw-page-title-main">Color solid</span> Three-dimensional representation of a color space

A color solid is the three-dimensional representation of a color space or model and can be thought as an analog of, for example, the one-dimensional color wheel, which depicts the variable of hue ; or the 2D chromaticity diagram, which depicts the variables of hue and spectral purity. The added spatial dimension allows a color solid to depict the three dimensions of color: lightness, hue, and colorfulness, allowing the solid to depict all conceivable colors in an organized three-dimensional structure.

On Vision and Colors is a treatise by Arthur Schopenhauer that was published in May 1816 when the author was 28 years old. Schopenhauer had extensive discussions with Johann Wolfgang von Goethe about the poet's Theory of Colours of 1810, in the months around the turn of the years 1813 and 1814, and initially shared Goethe's views. Their growing theoretical disagreements and Schopenhauer's criticisms made Goethe distance himself from his young collaborator. Although Schopenhauer considered his own theory superior, he would still continue to praise Goethe's work as an important introduction to his own.

<span class="mw-page-title-main">Color space</span> Standard that defines a specific range of colors

A color space is a specific organization of colors. In combination with color profiling supported by various physical devices, it supports reproducible representations of color – whether such representation entails an analog or a digital representation. A color space may be arbitrary, i.e. with physically realized colors assigned to a set of physical color swatches with corresponding assigned color names, or structured with mathematical rigor. A "color space" is a useful conceptual tool for understanding the color capabilities of a particular device or digital file. When trying to reproduce color on another device, color spaces can show whether shadow/highlight detail and color saturation can be retained, and by how much either will be compromised.

<span class="mw-page-title-main">Congenital red–green color blindness</span> Most common genetic condition leading to color blindness

Congenital red–green color blindness is an inherited condition that is the root cause of the majority of cases of color blindness. It has no significant symptoms aside from its minor to moderate effect on color vision. It is caused by variation in the functionality of the red and/or green opsin proteins, which are the photosensitive pigment in the cone cells of the retina, which mediate color vision. Males are more likely to inherit red–green color blindness than females, because the genes for the relevant opsins are on the X chromosome. Screening for congenital red–green color blindness is typically performed with the Ishihara or similar color vision test. It is a lifelong condition, and has no known cure or treatment.

References

  1. MacEvoy, Bruce (2005). "Light and the eye". Handprint. Retrieved 5 May 2007.
  2. Hunt, R. W. (1998). Measuring Colour (3rd ed.). England: Fountain Press. pp. 39–46 for the basis in the physiology of the human eye of tripartite color models, and 54–57 for chromaticity coordinates. ISBN   0-86343-387-1.
  3. "IEC 61966-2-1:1999: Multimedia systems and equipment - Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB". IEC Webstore. International Electrotechnical Commission . Retrieved 24 November 2023.
  4. 1 2 Churchland, Paul (2005). "Chimerical Colors: Some Phenomenological Predictions from Cognitive Neuroscience". Philosophical Psychology. 18 (5): 527–60. doi:10.1080/09515080500264115. S2CID   144906744.
  5. Crane, Hewitt D.; Piantanida, Thomas P. (1983). "On Seeing Reddish Green and Yellowish Blue". Science. 221 (4615): 1078–80. Bibcode:1983Sci...221.1078C. doi:10.1126/science.221.4615.1078. JSTOR   1691544. PMID   17736657. S2CID   34878248.
  6. Suarez J; Suarez, Juan (2009). "Reddish Green: A Challenge for Modal Claims About Phenomenal Structure". Philosophy and Phenomenological Research. 78 (2): 346–91. doi:10.1111/j.1933-1592.2009.00247.x.
  7. 1 2 Billock, Vincent A.; Gerald A. Gleason; Brian H. Tsou (2001). "Perception of forbidden colors in retinally stabilized equiluminant images: an indication of softwired cortical color opponency?" (PDF). Journal of the Optical Society of America A. 18 (10). Optical Society of America: 2398–2403. Bibcode:2001JOSAA..18.2398B. doi:10.1364/JOSAA.18.002398. PMID   11583256. Archived from the original (PDF) on 10 June 2010. Retrieved 21 August 2010.
  8. Hsieh, P.-J.; Tse, P. U. (2006). "Illusory color mixing upon perceptual fading and filling-in does not result in "forbidden colors"". Vision Research. 46 (14): 2251–58. doi: 10.1016/j.visres.2005.11.030 . PMID   16469353.
  9. 1 2 3 Gary Westfahl (2005). The Greenwood Encyclopedia of Science Fiction and Fantasy: Themes, Works, and Wonders. Greenwood Publishing Group. p. 143. ISBN   978-0-313-32951-7.
  10. 1 2 Alexander Theroux (2017). Einstein's Beets. Fantagraphics Books. p. 640. ISBN   978-1-60699-976-9.
  11. 1 2 Mark J.P. Wolf (2020). World-Builders on World-Building: An Exploration of Subcreation. Taylor & Francis. pp. 116–. ISBN   978-0-429-51601-6.
  12. Eric D. Smith (2012). Globalization, Utopia and Postcolonial Science Fiction: New Maps of Hope. Palgrave Macmillan. p. 74. ISBN   978-0-230-35447-0.
  13. Kurland, Daniel (2 February 2016). "That Time 'Futurama' Was Reborn as a Video Game, Anime, and More". Vulture. Retrieved 14 July 2020.
  14. "Octarine: The Imaginary Color of Magic". www.colourlovers.com. 19 April 2008.
  15. Vernor Vinge (2007). A Deepness in the Sky. Tor Books. pp. 56, 176, 444, 445, 446. ISBN   9781429915090.
  16. "The Good Place leaps into the unknown—and greatness". TV Club. 21 October 2016.

Further reading