Chromaticity

Last updated
The CIE 1931 xy chromaticity space, also showing the chromaticities of black-body light sources of various temperatures, and lines of constant correlated color temperature PlanckianLocus.png
The CIE 1931 xy chromaticity space, also showing the chromaticities of black-body light sources of various temperatures, and lines of constant correlated color temperature
Chromaticity diagram showing the standard RGB (sRGB) gamut Chromaticity Diagram RGB.svg
Chromaticity diagram showing the standard RGB (sRGB) gamut
3D chromaticity diagram of the WideGamutRGB color space 3D Chromaticity Diagram WideGamutRGB.svg
3D chromaticity diagram of the WideGamutRGB color space

Chromaticity is an objective specification of the quality of a color regardless of its luminance. Chromaticity consists of two independent parameters, often specified as hue (h) and colorfulness (s), where the latter is alternatively called saturation, chroma, intensity, [1] or excitation purity. [2] [3] This number of parameters follows from trichromacy of vision of most humans, which is assumed by most models in color science.

Contents

Quantitative description

In color science, the white point of an illuminant or of a display is a neutral reference characterized by a chromaticity; all other chromaticities may be defined in relation to this reference using polar coordinates. The hue is the angular component, and the purity is the radial component, normalized[ clarification needed ] by the maximum radius for that hue.

Purity is roughly equivalent to the term "saturation" in the HSV color model. The property "hue" is as used in general color theory and in specific color models such as HSL and HSV color spaces, though it is more perceptually uniform in color models such as Munsell, CIELAB or CIECAM02.

Some color spaces separate the three dimensions of color into one luminance dimension and a pair of chromaticity dimensions. For example, the white point of an sRGB display is an x, y chromaticity of (0.3127, 0.3290), where x and y coordinates are used in the xyY space.

(u', v'), the chromaticity in CIELUV, is a fairly perceptually uniform presentation of the chromaticity as (another than in CIE 1931) planar Euclidean shape. This presentation is a projective transformation of the CIE 1931 chromaticity diagram above. CIE 1976 UCS.png
(u′, v′), the chromaticity in CIELUV, is a fairly perceptually uniform presentation of the chromaticity as (another than in CIE 1931) planar Euclidean shape. This presentation is a projective transformation of the CIE 1931 chromaticity diagram above.

These pairs determine a chromaticity as affine coordinates on a triangle in a 2D-space, which contains all possible chromaticities. These x and y are used because of simplicity of expression in CIE 1931 (see below) and have no inherent advantage. Other coordinate systems on the same X-Y-Z triangle, or other color triangles, can be used.

On the other hand, some color spaces such as RGB and XYZ do not separate out chromaticity, but chromaticity is defined by a mapping that normalizes out intensity, and its coordinates, such as r and g or x and y, can be calculated through the division operation, such as x = X/X + Y + Z, and so on.

The xyY space is a cross between the CIE XYZ and its normalized chromaticity coordinates xyz, such that the luminance Y is preserved and augmented with just the required two chromaticity dimensions. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Hue</span> Property of a color indicating balance of color perceived by the normal human eye

In color theory, hue is one of the main properties of a color, defined technically in the CIECAM02 model as "the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, orange, yellow, green, blue, violet," within certain theories of color vision.

<span class="mw-page-title-main">HSL and HSV</span> Alternative representations of the RGB color model

HSL and HSV are alternative representations of the RGB color model, designed in the 1970s by computer graphics researchers. In these models, colors of each hue are arranged in a radial slice, around a central axis of neutral colors which ranges from black at the bottom to white at the top.

<span class="mw-page-title-main">CIELAB color space</span> Standard color space with color-opponent values

The CIELAB color space, also referred to as L*a*b*, is a color space defined by the International Commission on Illumination in 1976. It expresses color as three values: L* for perceptual lightness and a* and b* for the four unique colors of human vision: red, green, blue and yellow. CIELAB was intended as a perceptually uniform space, where a given numerical change corresponds to a similar perceived change in color. While the LAB space is not truly perceptually uniform, it nevertheless is useful in industry for detecting small differences in color.

The rg chromaticity space, two dimensions of the normalized RGB, or rgb, space, is a chromaticity space, a two-dimensional color space in which there is no intensity information.

<span class="mw-page-title-main">Dominant wavelength</span> Any monochromatic spectral light that evokes the corresponding perception of hue

In color science, the dominant wavelength is a method of characterizing a color's hue. Along with purity, it makes up one half of the Helmholtz coordinates. A color's dominant wavelength is the wavelength of monochromatic spectral light that evokes an identical perception of hue.

<span class="mw-page-title-main">Colorfulness</span> Perceived intensity of a specific color

Colorfulness, chroma and saturation are attributes of perceived color relating to chromatic intensity. As defined formally by the International Commission on Illumination (CIE) they respectively describe three different aspects of chromatic intensity, but the terms are often used loosely and interchangeably in contexts where these aspects are not clearly distinguished. The precise meanings of the terms vary by what other functions they are dependent on.

<span class="mw-page-title-main">Adobe RGB color space</span> Color space developed by Adobe

The Adobe RGB (1998) color space or opRGB is a color space developed by Adobe Inc. in 1998. It was designed to encompass most of the colors achievable on CMYK color printers, but by using RGB primary colors on a device such as a computer display. The Adobe RGB (1998) color space encompasses roughly 50% of the visible colors specified by the CIELAB color space – improving upon the gamut of the sRGB color space, primarily in cyan-green hues. It was subsequently standardized by the IEC as IEC 61966-2-5:1999 with a name opRGB and is used in HDMI.

A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components. When this model is associated with a precise description of how the components are to be interpreted, taking account of visual perception, the resulting set of colors is called "color space."

<span class="mw-page-title-main">CIE 1931 color space</span> Color space defined by the CIE in 1931

The CIE 1931 color spaces are the first defined quantitative links between distributions of wavelengths in the electromagnetic visible spectrum, and physiologically perceived colors in human color vision. The mathematical relationships that define these color spaces are essential tools for color management, important when dealing with color inks, illuminated displays, and recording devices such as digital cameras. The system was designed in 1931 by the "Commission Internationale de l'éclairage", known in English as the International Commission on Illumination.

<span class="mw-page-title-main">Abney effect</span> Perceived hue shift when white light is added to a monochromatic light source

The Abney effect or the purity-on-hue effect describes the perceived hue shift that occurs when white light is added to a monochromatic light source.

Relative luminance follows the photometric definition of luminance including spectral weighting for human vision, but while luminance is a measure of light in units such as , Relative luminance values are normalized as 0.0 to 1.0, with 1.0 being a theoretical perfect reflector of 100% reference white. Like the photometric definition, it is related to the luminous flux density in a particular direction, which is radiant flux density weighted by the luminous efficiency function y(λ) of the CIE Standard Observer.

Adams chromatic valence color spaces are a class of color spaces suggested by Elliot Quincy Adams. Two important Adams chromatic valence spaces are CIELUV and Hunter Lab.

<span class="mw-page-title-main">Lightness</span> Property of a color

Lightness is a visual perception of the luminance of an object. It is often judged relative to a similarly lit object. In colorimetry and color appearance models, lightness is a prediction of how an illuminated color will appear to a standard observer. While luminance is a linear measurement of light, lightness is a linear prediction of the human perception of that light.

In colorimetry, the CIE 1976L*, u*, v*color space, commonly known by its abbreviation CIELUV, is a color space adopted by the International Commission on Illumination (CIE) in 1976, as a simple-to-compute transformation of the 1931 CIE XYZ color space, but which attempted perceptual uniformity. It is extensively used for applications such as computer graphics which deal with colored lights. Although additive mixtures of different colored lights will fall on a line in CIELUV's uniform chromaticity diagram, such additive mixtures will not, contrary to popular belief, fall along a line in the CIELUV color space unless the mixtures are constant in lightness.

<span class="mw-page-title-main">CIECAM02</span>

In colorimetry, CIECAM02 is the color appearance model published in 2002 by the International Commission on Illumination (CIE) Technical Committee 8-01 and the successor of CIECAM97s.

<span class="mw-page-title-main">Color space</span> Standard that defines a specific range of colors

A color space is a specific organization of colors. In combination with color profiling supported by various physical devices, it supports reproducible representations of color – whether such representation entails an analog or a digital representation. A color space may be arbitrary, i.e. with physically realized colors assigned to a set of physical color swatches with corresponding assigned color names, or structured with mathematical rigor. A "color space" is a useful conceptual tool for understanding the color capabilities of a particular device or digital file. When trying to reproduce color on another device, color spaces can show whether shadow/highlight detail and color saturation can be retained, and by how much either will be compromised.

A color appearance model (CAM) is a mathematical model that seeks to describe the perceptual aspects of human color vision, i.e. viewing conditions under which the appearance of a color does not tally with the corresponding physical measurement of the stimulus source.

<span class="mw-page-title-main">HCL color space</span> Color space model

HCL (Hue-Chroma-Luminance) or LCh refers to any of the many cylindrical color space models that are designed to accord with human perception of color with the three parameters. Lch has been adopted by information visualization practitioners to present data without the bias implicit in using varying saturation. They are, in general, designed to have characteristics of both cylindrical translations of the RGB color space, such as HSL and HSV, and the L*a*b* color space. Some conflicting definitions of the terms are:

In colorimetry, the HSLuvcolor space is a human-friendly alternative to the HSL color space. It was formerly known as "husl". It is a variation of the CIE LCH(uv) color space, where the C (colorfulness) component is replaced by a "Saturation" (S) component representing the colorfulness percentage relative to the maximum sRGB can provide given the L and H values. The value has nothing to do with "saturation" in color theory.

References

  1. In modern terminology the word "intensity" may refer to lightness, not to colorfulness.
  2. Emil Wolf (1961). Progress in Optics. North Holland Pub. Co.
  3. Leslie D. Stroebel, Richard D. Zakia (1993). The Focal Encyclopedia of Photography . Focal Press. p.  124. ISBN   978-0-240-51417-8. chromaticity hue saturation chroma colorfulness purity.
  4. Charles A. Poynton (2003). Digital Video and HDTV: Algorithms and Interfaces. Morgan Kaufmann. ISBN   978-1-55860-792-7.
  1. Ćirić, Aleksandar; Stojadinović, Stevan; Sekulić, Milica; Dramićanin, Miroslav D. (January 2019). "JOES: An application software for Judd-Ofelt analysis from Eu3+ emission spectra". Journal of Luminescence. 205: 351–356. Bibcode:2019JLum..205..351C. doi:10.1016/j.jlumin.2018.09.048. S2CID   105828989.