Color calibration

Last updated

The aim of color calibration is to measure and/or adjust the color response of a device (input or output) to a known state. [1] In International Color Consortium (ICC) terms, this is the basis for an additional color characterization of the device and later profiling. [2] In non-ICC workflows, calibration sometimes refers to establishing a known relationship to a standard color space [3] in one go. The device that is to be calibrated is sometimes known as a calibration source; the color space that serves as a standard is sometimes known as a calibration target.[ citation needed ] Color calibration is a requirement for all devices taking an active part in a color-managed workflow and is used by many industries, such as television production, gaming, photography, engineering, chemistry, medicine, and more.

Contents

Information flow and output distortion

Input data can come from device sources like digital cameras, image scanners, or any other measuring devices. Those inputs can be either monochrome (in which case only the response curve needs to be calibrated, though in a few select cases, one must also specify the color or spectral power distribution that that single channel corresponds to) or specified in multidimensional color, most commonly in the three-channel red-green-blue model. Input data is, in most cases, calibrated against a profile connection space (PCS). [4]

One of the most important factors to consider when dealing with color calibration is having a valid source. If the color measuring source does not match the display's capabilities, the calibration will be ineffective and give false readings.

The main distorting factors on the input stage stem from the amplitude nonlinearity of the channel responses, and in the case of a multidimensional datastream, the non-ideal wavelength responses of the individual color separation filters, most commonly a color filter array, in combination with the spectral power distribution of the scene illumination.

After this, the data is often circulated in the system and translated into a working space RGB for viewing and editing.

In the output stage, when exporting to a viewing device such as a cathode ray tube, liquid crystal display screen, or digital projector, the computer sends a signal to the computer's graphic card in the form of RGB [Red, Green, Blue]. The dataset [255,0,0] signals only a device instruction, not a specific color. This instruction [R,G,B]=[255,0,0] then causes the connected display to show Red at the maximum achievable brightness [255], while the Green and Blue components of the display remain dark [0]. The resultant color being displayed, however, depends on two main factors:

Hence, every output device will have its own unique color signature, displaying a certain color according to manufacturing tolerances and material deterioration through use and age. If the output device is a printer, additional distorting factors are the qualities of a particular batch of paper and ink.

The conductive qualities and standards-compliance of connecting cables, circuitry, and equipment can also alter the electrical signal at any stage in the signal flow. (A partially inserted VGA connector can result in a monochrome display, for example, as some pins are not connected.)

Color perception

Display adjustment process on DisplayCAL, here adjusting white point DisplayCAL display adjustment on GNOME screenshot.png
Display adjustment process on DisplayCAL, here adjusting white point

Color perception is subject to ambient light levels, and the ambient white point; for example, a red object looks black in blue light. It is therefore not possible to achieve calibration that will make a device look correct and consistent in all capture or viewing conditions. The computer display and calibration target will have to be considered in controlled, predefined lighting conditions.

Calibration techniques and procedures

Calibration Target of the "Mars Hand Lens Imager (MAHLI)" on the Mars Curiosity rover (September 9, 2012) (3-D image). PIA16132-MarsCuriosityRover-CalibrationTarget-20120909.jpg
Calibration Target of the "Mars Hand Lens Imager (MAHLI)" on the Mars Curiosity rover (September 9, 2012) (3-D image).

The most common form of calibration aims at adjusting cameras, scanners, monitors, and printers for photographic reproduction. The aim is that a printed copy of a photograph appears identical in saturation and dynamic range to the original or a source file on a computer display. This means that three independent calibrations need to be performed:

These goals can either be realized via direct value translation from source to target, or by using a common known reference color space as middle ground. In the most commonly used color profile system, ICC, this is known as the PCS or "Profile Connection Space".

Camera

The camera calibration needs a known calibration target to be photographed and the resulting output from the camera to be converted to color values. A correction profile can then be built using the difference between the camera result values and the known reference values. When two or more cameras need to be calibrated relatively to each other, to reproduce the same color values, the technique of color mapping can be used.

Scanner

An IT8.7 Target by LaserSoft Imaging IT8target.jpg
An IT8.7 Target by LaserSoft Imaging

For creating a scanner profile it needs a target source, such as an IT8-target, an original with many small color fields, which was measured by the developer with a photometer. The scanner reads this original and compares the scanned color values with the target's reference values. Taking the differences of these values into account an ICC profile is created, which relates the device-specific color space (RGB color space) to a device-independent color space (L*a*b* color space). Thus, the scanner is able to output with color fidelity to what it reads.

Display

Color calibration of a monitor using ColorHug2, an open source colorimeter, placed on the screen. ColorHug2 - 03.jpg
Color calibration of a monitor using ColorHug2, an open source colorimeter, placed on the screen.

For calibrating the monitor a colorimeter is attached flat to the display's surface, shielded from all ambient light. The calibration software sends a series of color signals to the display and compares the values that were actually sent against the readings from the calibration device. This establishes the current offsets in color display. Depending on the calibration software and type of monitor used, the software either creates a correction matrix (i.e. an ICC profile) for color values before being sent to the display or gives instructions for altering the display's brightness/contrast and RGB values through the OSD. This tunes the display to reproduce fairly accurately the in-gamut part of a desired color space. The calibration target for this kind of calibration is that of print stock paper illuminated by D65 light at 120 cd/m2.

Printer

The ICC profile for a printer is created by comparing a test print result using a photometer with the original reference file. The test chart contains known CMYK colors, whose offsets to their actual L*a*b* colors scanned by the photometer result in an ICC profile. Another possibility to ICC profile a printer is to use a calibrated scanner as the measuring device for the printed CMYK test chart instead of a photometer. A calibration profile is necessary for each printer/paper/ink combination.

See also

Related Research Articles

<span class="mw-page-title-main">RGB color model</span> Color model based on red, green, and blue

The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

Gamma correction or gamma is a nonlinear operation used to encode and decode luminance or tristimulus values in video or still image systems. Gamma correction is, in the simplest cases, defined by the following power-law expression:

<span class="mw-page-title-main">RGB color spaces</span> Any additive color space based on the RGB color model

An RGB color space is one of many specific additive colorimetric color spaces based on the RGB color model.

Color management is the process of ensuring consistent and accurate colors across various devices, such as monitors, printers, and cameras. It involves the use of color profiles, which are standardized descriptions of how colors should be displayed or reproduced.

<span class="mw-page-title-main">Gamut</span> Color reproduction capability

In color reproduction and colorimetry, a gamut, or color gamut, is a convex set containing the colors that can be accurately represented, i.e. reproduced by an output device or measured by an input device. Devices with a larger gamut can represent more colors. Similarly, gamut may also refer to the colors within a defined color space, which is not linked to a specific device. A trichromatic gamut is often visualized as a color triangle. A less common usage defines gamut as the subset of colors contained within an image, scene or video.

ColorSync is Apple Inc.'s color management API for the Mac OS and Mac OS X Operating Systems.

sRGB Standard RGB color space

sRGB is a standard RGB color space that HP and Microsoft created cooperatively in 1996 to use on monitors, printers, and the World Wide Web. It was subsequently standardized by the International Electrotechnical Commission (IEC) as IEC 61966-2-1:1999. sRGB is the current defined standard colorspace for the web, and it is usually the assumed colorspace for images that are neither tagged for a colorspace nor have an embedded color profile.

<span class="mw-page-title-main">Adobe RGB color space</span> Color space developed by Adobe

The Adobe RGB (1998) color space or opRGB is a color space developed by Adobe Inc. in 1998. It was designed to encompass most of the colors achievable on CMYK color printers, but by using RGB primary colors on a device such as a computer display. The Adobe RGB (1998) color space encompasses roughly 50% of the visible colors specified by the CIELAB color space – improving upon the gamut of the sRGB color space, primarily in cyan-green hues. It was subsequently standardized by the IEC as IEC 61966-2-5:1999 with a name opRGB and is used in HDMI.

<span class="mw-page-title-main">Barco Creator</span>

Barco Creator was an image manipulation program targeted at the repro and print shop markets. It was developed by Barco Creative Systems a division of the Barco Group and first shown as a prototype at Parigraph in April 1988, then later at Ipex 88). Barco Creative Systems together with D.I.S.C. and Aesthedes merged into Barco Graphics. It ran on several generations of Silicon Graphics computers till the late 1990s. Barco Graphics ColorTone for Windows NT is considered its successor.

<span class="mw-page-title-main">Linux color management</span> Controlled color representations on Linux operating system

Linux color management has the same goal as the color management systems (CMS) for other operating systems, which is to achieve the best possible color reproduction throughout an imaging workflow from its source, through imaging software, and finally onto an output medium. In particular, color management attempts to enable color consistency across media and throughout a color-managed workflow.

In color management, an ICC profile is a set of data that characterizes a color input or output device, or a color space, according to standards promulgated by the International Color Consortium (ICC). Profiles describe the color attributes of a particular device or viewing requirement by defining a mapping between the device source or target color space and a profile connection space (PCS). This PCS is either CIELAB (L*a*b*) or CIEXYZ. Mappings may be specified using tables, to which interpolation is applied, or through a series of parameters for transformations.

IT8 is a set of American National Standards Institute (ANSI) standards for color communications and control specifications. Formerly governed by the IT8 Committee, IT8 activities were merged with those of the Committee for Graphics Arts Technologies Standards in 1994.

Windows Color System (WCS) is a platform for color management, first included with Windows Vista, that aims to achieve color consistency across various software and hardware, including cameras, monitors, printers and scanners.

<span class="mw-page-title-main">Color chart</span> Card with color samples

A color chart or color reference card is a flat, physical object that has many different color samples present. They can be available as a single-page chart, or in the form of swatchbooks or color-matching fans.

<span class="mw-page-title-main">ColorChecker</span> Color calibration target

The ColorChecker Color Rendition Chart is a color calibration target consisting of a cardboard-framed arrangement of 24 squares of painted samples. The ColorChecker was introduced in a 1976 paper by McCamy, Marcus, and Davidson in the Journal of Applied Photographic Engineering. The chart’s color patches have spectral reflectances intended to mimic those of natural objects such as human skin, foliage, and flowers, to have consistent color appearance under a variety of lighting conditions, especially as detected by typical color photographic film, and to be stable over time.

<span class="mw-page-title-main">SilverFast</span>

SilverFast is the name of a family of software for image scanning and processing, including photos, documents and slides, developed by LaserSoft Imaging.

A contract proof usually serves as an agreement between customer and printer and as a color reference guide for adjusting the press before the final press run. Most contract proofs are a prepress proof.

<span class="mw-page-title-main">Image color transfer</span> Function that maps the colors of one image to the colors of another image

Image color transfer is a function that maps (transforms) the colors of one (source) image to the colors of another (target) image. A color mapping may be referred to as the algorithm that results in the mapping function or the algorithm that transforms the image colors. The image modification process is sometimes called color transfer or, when grayscale images are involved, brightness transfer function (BTF); it may also be called photometric camera calibration or radiometric camera calibration.

The G7 Method is a printing procedure used for visually accurate color reproduction by putting emphasis on matching grayscale colorimetric measurements between processes. G7 stands for grayscale plus seven colors: the subtractive colors typically used in printing and the additive colors. The method is used in many applications of printing such as offset lithography, flexography, and gravure since it uses a one-dimensional neutral print density curve (NPDC) to match neutral tonality between two G7 calibrated printing systems. The G7 method is not a completely accurate color management system nor is it officially standardized by the International Color Consortium (ICC).

The Academy Color Encoding System (ACES) is a color image encoding system created under the auspices of the Academy of Motion Picture Arts and Sciences. ACES is characterised by a color accurate workflow, with "seamless interchange of high quality motion picture images regardless of source".

References

  1. Wransky, Michael (November 3, 2015). Color Calibration Techniques for True Color Measurement: Computer Interpretation of Color. Lap Lambert Academic Publishing GmbH KG. ISBN   978-3-659-78939-7.
  2. Graeme Gill. "Calibration vs. Characterization". Graeme Gill. Archived from the original on October 30, 2011. Retrieved November 4, 2011.
  3. Hsien-Che Lee (2005). Introduction to color imaging science. Cambridge University Press. ISBN   0-521-84388-X.
  4. Ann L. McCarthy. "Color Imaging Workflow Primitives" (PDF). International Color Consortium. Archived (PDF) from the original on July 31, 2021. Retrieved September 14, 2021.