IT8

Last updated

IT8 is a set of American National Standards Institute (ANSI) standards for color communications and control specifications. Formerly governed by the IT8 Committee, IT8 activities were merged with those of the Committee for Graphics Arts Technologies Standards (CGATS) in 1994.

Contents

Standards list

The following is a list of the IT8 standards, according to the NPES Standards Blue Book:

IT8.6 - 2002 - Graphic technology - Prepress digital data exchange - Diecutting data (DDES3)

This standard establishes a data exchange format to enable transfer of numerical control information between diecutting systems and electronic prepress systems. The information will typically consist of numerical control information used in the manufacture of dies. 37 pp.

IT8.7/1 - 1993 (R2003) - Graphic technology - Color transmission target for input scanner calibration

This standard defines an input test target that will allow any color input scanner to be calibrated with any film dye set used to create the target. It is intended to address the color transparency products that are generally used for input to the preparatory process for printing and publishing. This standard defines the layout and colorimetric values of a target that can be manufactured on any positive color transparency film and that is intended for use in the calibration of a photographic film/scanner combination. 32 pp.

IT8.7/2 - 1993 (R2003) Graphic technology - Color reflection target for input scanner calibration

This standard defines an input test target that will allow any color input scanner to be calibrated with any film dye set used to create the target. It is intended to address the color photographic paper products that are generally used for input to the preparatory process for printing and publishing. It defines the layout and colorimetric values of the target that can be manufactured on any color photographic paper and is intended for use in the calibration of a photographic paper/scanner combination. 29 pp.

IT8.7/3 - 1993 (R2003) Graphic technology - Input data for characterization of 4-color process printing

The purpose of this standard is to specify an input data file, a measurement procedure and an output data format to characterize any four-color printing process. The output data (characterization) file should be transferred with any four-color (cyan, magenta, yellow and black) halftone image files to enable a color transformation to be undertaken when required. 29 pp.

Targets

This is an IT8 color target made in EGM Laboratories in Barcelona, Spain. It has a very big gamut, slightly bigger than Adobe RGB color space. IT8 color target by EGM Laboratories.jpg
This is an IT8 color target made in EGM Laboratories in Barcelona, Spain. It has a very big gamut, slightly bigger than Adobe RGB color space.

Calibrating all devices involved in the process chain (original, scanner/digital camera, monitor/printer) is required for an authentic color reproduction, because their actual color spaces differ device-specifically from the reference color spaces.

An IT8 calibration is done with what are called IT8 targets, which are defined by the IT8 standards.

Example

Special targets, implementing the IT8.7/1 (transparent target) or IT8.7/2 (reflective target) standards, are needed for calibrating scanners. These targets consists of 24 grey fields and 264 color fields in 22 columns:

After scanning such a target, an ICC profile gets calculated on the basis of reference values. This profile is used for all subsequent scans and assures color fidelity.

See also

Related Research Articles

<span class="mw-page-title-main">Cyan</span> Color visible between blue and green on the visible spectrum; subtractive (CMY) primary color

Cyan is the color between blue and green on the visible spectrum of light. It is evoked by light with a predominant wavelength between 490 and 520 nm, between the wavelengths of green and blue.

<span class="mw-page-title-main">RGB color model</span> Color model based on red, green, and blue

The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary colors, red, green, and blue.

<span class="mw-page-title-main">CMYK color model</span> Subtractive color model, used in color printing

The CMYK color model is a subtractive color model, based on the CMY color model, used in color printing, and is also used to describe the printing process itself. The abbreviation CMYK refers to the four ink plates used: cyan, magenta, yellow, and key (black).

<span class="mw-page-title-main">Magenta</span> Color

Magenta is a purplish-red color. On color wheels of the RGB (additive) and CMY (subtractive) color models, it is located precisely midway between red and blue. It is one of the four colors of ink used in color printing by an inkjet printer, along with yellow, cyan, and black to make all the other colors. The tone of magenta used in printing, printer's magenta, is redder than the magenta of the RGB (additive) model, the former being closer to rose.

Color management is the process of ensuring consistent and accurate colors across various devices, such as monitors, printers, and cameras. It involves the use of color profiles, which are standardized descriptions of how colors should be displayed or reproduced.

<span class="mw-page-title-main">Gamut</span> Color reproduction capability

In color reproduction and colorimetry, a gamut, or color gamut, is a convex set containing the colors that can be accurately represented, i.e. reproduced by an output device or measured by an input device. Devices with a larger gamut can represent more colors. Similarly, gamut may also refer to the colors within a defined color space, which is not linked to a specific device. A trichromatic gamut is often visualized as a color triangle. A less common usage defines gamut as the subset of colors contained within an image, scene or video.

<span class="mw-page-title-main">Subtractive color</span> Light passing through successive filters

Subtractive color or subtractive color mixing predicts the spectral power distribution of light after it passes through successive layers of partially absorbing media. This idealized model is the essential principle of how dyes and pigments are used in color printing and photography, where the perception of color is elicited after white light passes through microscopic "stacks" of partially absorbing media allowing some wavelengths of light to reach the eye and not others, and also in painting, whether the colors are mixed or applied in successive layers.

Color printing or colour printing is the reproduction of an image or text in color.

The aim of color calibration is to measure and/or adjust the color response of a device to a known state. In International Color Consortium (ICC) terms, this is the basis for an additional color characterization of the device and later profiling. In non-ICC workflows, calibration sometimes refers to establishing a known relationship to a standard color space in one go. The device that is to be calibrated is sometimes known as a calibration source; the color space that serves as a standard is sometimes known as a calibration target. Color calibration is a requirement for all devices taking an active part in a color-managed workflow and is used by many industries, such as television production, gaming, photography, engineering, chemistry, medicine, and more.

<span class="mw-page-title-main">Linux color management</span> Controlled color representations on Linux operating system

Linux color management has the same goal as the color management systems (CMS) for other operating systems, which is to achieve the best possible color reproduction throughout an imaging workflow from its source, through imaging software, and finally onto an output medium. In particular, color management attempts to enable color consistency across media and throughout a color-managed workflow.

In color management, an ICC profile is a set of data that characterizes a color input or output device, or a color space, according to standards promulgated by the International Color Consortium (ICC). Profiles describe the color attributes of a particular device or viewing requirement by defining a mapping between the device source or target color space and a profile connection space (PCS). This PCS is either CIELAB (L*a*b*) or CIEXYZ. Mappings may be specified using tables, to which interpolation is applied, or through a series of parameters for transformations.

Dye transfer is a continuous-tone color photographic printing process. It was used to print Technicolor films, as well as to produce paper colour prints used in advertising, or large transparencies for display.

<span class="mw-page-title-main">Specifications for Web Offset Publications</span>

Specifications for Web Offset Publications, invariably abbreviated to SWOP, is an organization and the name of a set of specifications that it produces, with the aim of improving the consistency and quality of professionally printed material in the United States, and of certain other products, programs and endorsements related to their work. Among other things, the organization specifies SWOP inks used in CMYK printing, colors of SWOP proofs, other physical qualities pertaining to printing. The organization publishes its own specification and ICC profile and runs a certification program.

<span class="mw-page-title-main">Color chart</span> Card with color samples

A color chart or color reference card is a flat, physical object that has many different color samples present. They can be available as a single-page chart, or in the form of swatchbooks or color-matching fans.

<span class="mw-page-title-main">ColorChecker</span> Color calibration target

The ColorChecker Color Rendition Chart is a color calibration target consisting of a cardboard-framed arrangement of 24 squares of painted samples. The ColorChecker was introduced in a 1976 paper by McCamy, Marcus, and Davidson in the Journal of Applied Photographic Engineering. The chart’s color patches have spectral reflectances intended to mimic those of natural objects such as human skin, foliage, and flowers, to have consistent color appearance under a variety of lighting conditions, especially as detected by typical color photographic film, and to be stable over time.

<span class="mw-page-title-main">SilverFast</span>

SilverFast is the name of a family of software for image scanning and processing, including photos, documents and slides, developed by LaserSoft Imaging.

<span class="mw-page-title-main">Color space</span> Standard that defines a specific range of colors

A color space is a specific organization of colors. In combination with color profiling supported by various physical devices, it supports reproducible representations of color – whether such representation entails an analog or a digital representation. A color space may be arbitrary, i.e. with physically realized colors assigned to a set of physical color swatches with corresponding assigned color names, or structured with mathematical rigor. A "color space" is a useful conceptual tool for understanding the color capabilities of a particular device or digital file. When trying to reproduce color on another device, color spaces can show whether shadow/highlight detail and color saturation can be retained, and by how much either will be compromised.

A contract proof usually serves as an agreement between customer and printer and as a color reference guide for adjusting the press before the final press run. Most contract proofs are a prepress proof.

<span class="mw-page-title-main">Image color transfer</span> Function that maps the colors of one image to the colors of another image

Image color transfer is a function that maps (transforms) the colors of one (source) image to the colors of another (target) image. A color mapping may be referred to as the algorithm that results in the mapping function or the algorithm that transforms the image colors. The image modification process is sometimes called color transfer or, when grayscale images are involved, brightness transfer function (BTF); it may also be called photometric camera calibration or radiometric camera calibration.

The G7 Method is a printing procedure used for visually accurate color reproduction by putting emphasis on matching grayscale colorimetric measurements between processes. G7 stands for grayscale plus seven colors: the subtractive colors typically used in printing and the additive colors. The method is used in many applications of printing such as offset lithography, flexography, and gravure since it uses a one-dimensional neutral print density curve (NPDC) to match neutral tonality between two G7 calibrated printing systems. The G7 method is not a completely accurate color management system nor is it officially standardized by the International Color Consortium (ICC).

References