Kruithof curve

Last updated

The Kruithof curve, with an example light source; D65 (Northern daylight), inside the pleasing region. Kruithof curve 2.svg
The Kruithof curve, with an example light source; D65 (Northern daylight), inside the pleasing region.

The Kruithof curve describes a region of illuminance levels and color temperatures that are often viewed as comfortable or pleasing to an observer. The curve was constructed from psychophysical data collected by Dutch physicist Arie Andries Kruithof, [2] though the original experimental data is not present on the curve itself. Lighting conditions within the bounded region were empirically assessed as being pleasing or natural, whereas conditions outside the region were considered uncomfortable, displeasing or unnatural. [3] The Kruithof curve is a sufficient model for describing sources that are considered natural or closely resemble Planckian black bodies, but its value in describing human preference has been consistently questioned by further studies on interior lighting. [4] [5]

Contents

For example, natural daylight has a color temperature of 6500 K and an illuminance of about 104 to 105 lux. This color temperature–illuminance pair results in natural color rendition, but if viewed at a low illuminance, would appear bluish. At typical indoor office illuminance levels of about 400 lux, pleasing color temperatures are lower (between 3000 and 6000 K), and at typical home illuminance levels of about 75 lux, pleasing color temperatures are even lower (between 2400 and 2700 K). These color temperature-illuminance pairs are often achieved with fluorescent and incandescent sources, respectively. The pleasing region of the curve contains color temperatures and illuminance levels comparable to naturally lit environments.

History

At the emergence of fluorescent lighting in 1941, Kruithof conducted psychophysical experiments to provide a technical guide to design artificial lighting. [6] Using gas-discharge fluorescent lamps, Kruithof was able to manipulate the color of emitted light and ask observers to report as to whether or not the source was pleasing to them. The sketch of his curve as presented consists of three major regions: the middle region, which corresponds to light sources considered pleasing; the lower region, which corresponds to colors that are considered cold and dim; and the upper region, which corresponds to colors that are warm and unnaturally colorful. These regions, while approximate, are still used to determine appropriate lighting configurations for homes or offices.

Perception and adaptation

Simulated appearance of a red geranium and foliage in normal bright-light (photopic) vision, dusk (mesopic) vision, and night (scotopic) vision. The blueish flower centers are still perceived as bright in the image of the flower viewed at dusk and at night. Red geranium photopic mesopic scotopic.jpg
Simulated appearance of a red geranium and foliage in normal bright-light (photopic) vision, dusk (mesopic) vision, and night (scotopic) vision. The blueish flower centers are still perceived as bright in the image of the flower viewed at dusk and at night.

Kruithof's findings are directly related to human adaptation to changes in illumination. As illuminance decreases, human sensitivity to blue light increases. This is known as the Purkinje effect. [7] The human visual system switches from photopic (cone-dominated) vision to scotopic (rod-dominated) vision when luminance levels decrease. Rods have a very high spectral sensitivity to blue energy, whereas cones have varying spectral sensitivities to reds, greens and blues. Since the dominating photoreceptor in scotopic vision is most sensitive to blue, human sensitivity to blue light is therefore increased. Because of this, intense sources of higher (bluer) color temperatures are all generally considered to be displeasing at low luminance levels, and a narrow range of pleasing sources exist. Subsequently, the range of pleasing sources increases in photopic vision as luminance levels are increased.

Criticism

While the curve has been used as a guide to design artificial lighting for indoor spaces, with the general suggestion to use sources with low correlated color temperatures (CCT) at low illuminances, [8] Kruithof did not describe the method of evaluation, the independent variables, nor the test sample that were used to develop the curve. Without these data, nor other validation, the conclusions should not be considered credible. The relationship between illuminance and CCT was not supported by subsequent work. [5] [4]

Illuminance and CCT has been examined in many studies of interior lighting [4] [5] [9] [10] [11] and these studies consistently demonstrate a different relationship to that suggested by Kruithof. [12] Rather than having upper and lower boundaries, these studies do not suggest CCT to have significant effect and for illuminance suggest only to avoid levels below 300 lux. Current studies have not explored the main critical part that is the low illumination regime or the low CCT range beneath 3000K in general, though some of the studies above reached down to 2850K. This lacunae in the data is particularly important as it relates to almost all "lifestyle" environments in which lighting designers operate - hotels, restaurants and residential settings. Further evaluation of these areas would serve well, given the implications for recent learning on the health implications of light on the circadian rhythm.

Further studies

The Kruithof curve, as presented, does not contain experimental data points and serves as an approximation for desirable lighting conditions. Therefore, its scientific accuracy has been reassessed.

Color rendering index is a metric for describing the appearance of a source and whether or not it is considered pleasing. The color rendering index of a given source is a measure of that source's ability to faithfully reproduce colors of an object. Light sources, like candles or incandescent light bulbs produce spectrums of electromagnetic energy that closely resemble Planckian black bodies; they look much like natural sources. Many fluorescent lamps or LED light bulbs have spectrums that do not match those of Planckian blackbodies and are considered unnatural. Therefore, the way that they render the perceived colors of an environment may be also considered unnatural. While these newer sources can still achieve correlated color temperatures and illuminance levels that are within the comfortable region of the Kruithof curve, variability in their color rendering indices may cause these sources to ultimately be displeasing.

Different activities or scenarios call for different color temperature–illuminance pairs: preferred light sources change depending on the scenario the source is illuminating. [13] Individuals did prefer color temperature–illuminance pairs within the comfortable region for dining, socializing and studying, but also preferred color temperature–illuminance pairs that were in the lower uncomfortable region for night time activities and preparing for bed. This is linked to the Purkinje effect; individuals who desire some light at night time desire lower (redder) color temperatures even if luminance levels are very low.

Kruithof's findings may also vary as a function of culture or geographic location. Desirable sources are based on an individual's previous experiences of perceiving color, and as different regions of the world may have their own lighting standards, each culture would likely have its own acceptable light sources.

The illuminance of a source is the dominating factor for deciding as to whether or not a source is pleasing or comfortable, as viewers participating in this experiment evaluated a range of correlated color temperatures and illuminance levels, yet their impressions remained generally unchanged as correlated color temperature changed. [14] Additionally, there is a relationship between correlated color temperature and apparent brightness of a source. [15] From these findings, it is evident that color rendering index, in place of correlated color temperature, may be a more appropriate metric for determining as to whether or not a certain source is considered pleasing.

See also

Related Research Articles

<span class="mw-page-title-main">Color temperature</span> Property of light sources related to black-body radiation

Color temperature is a parameter describing the color of a visible light source by comparing it to the color of light emitted by an idealized opaque, non-reflective body. The temperature of the ideal emitter that matches the color most closely is defined as the color temperature of the original visible light source. Color temperature is usually measured in kelvins. The color temperature scale describes only the color of light emitted by a light source, which may actually be at a different temperature.

<span class="mw-page-title-main">Daylighting (architecture)</span> Practice of placing openings and reflective surfaces so that sunlight can provide internal lighting

Daylighting is the practice of placing windows, skylights, other openings, and reflective surfaces so that direct or indirect sunlight can provide effective internal lighting. Particular attention is given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy use. Energy savings can be achieved from the reduced use of artificial (electric) lighting or from passive solar heating. Artificial lighting energy use can be reduced by simply installing fewer electric lights where daylight is present or by automatically dimming or switching off electric lights in response to the presence of daylight – a process known as daylight harvesting.

<span class="mw-page-title-main">Lux</span> SI derived unit of illuminance

The lux is the unit of illuminance, or luminous flux per unit area, in the International System of Units (SI). It is equal to one lumen per square metre. In photometry, this is used as a measure of the intensity, as perceived by the human eye, of light that hits or passes through a surface. It is analogous to the radiometric unit watt per square metre, but with the power at each wavelength weighted according to the luminosity function, a model of human visual brightness perception, standardized by the CIE and ISO. In English, "lux" is used as both the singular and plural form. The word is derived from the Latin word for "light", lux.

<span class="mw-page-title-main">Exposure (photography)</span> Amount of light captured by a camera

In photography, exposure is the amount of light per unit area reaching a frame of photographic film or the surface of an electronic image sensor. It is determined by shutter speed, lens F-number, and scene luminance. Exposure is measured in units of lux-seconds, and can be computed from exposure value (EV) and scene luminance in a specified region.

<span class="mw-page-title-main">Light meter</span> Device used to measure the amount of light

A light meter is a device used to measure the amount of light. In photography, an exposure meter is a light meter coupled to either a digital or analog calculator which displays the correct shutter speed and f-number for optimum exposure, given a certain lighting situation and film speed. Similarly, exposure meters are also used in the fields of cinematography and scenic design, in order to determine the optimum light level for a scene.

<span class="mw-page-title-main">Lighting</span> Deliberate use of light to achieve practical or aesthetic effects

Lighting or illumination is the deliberate use of light to achieve practical or aesthetic effects. Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing daylight. Daylighting is sometimes used as the main source of light during daytime in buildings. This can save energy in place of using artificial lighting, which represents a major component of energy consumption in buildings. Proper lighting can enhance task performance, improve the appearance of an area, or have positive psychological effects on occupants.

<span class="mw-page-title-main">Illuminance</span> Luminous flux incident on a surface per area

In photometry, illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of how much the incident light illuminates the surface, wavelength-weighted by the luminosity function to correlate with human brightness perception. Similarly, luminous emittance is the luminous flux per unit area emitted from a surface. Luminous emittance is also known as luminous exitance.

<span class="mw-page-title-main">Compact fluorescent lamp</span> Fluorescent lamps with folded tubes, often with built-in ballast

A compact fluorescent lamp (CFL), also called compact fluorescent light, energy-saving light and compact fluorescent tube, is a fluorescent lamp designed to replace an incandescent light bulb; some types fit into light fixtures designed for incandescent bulbs. The lamps use a tube that is curved or folded to fit into the space of an incandescent bulb, and a compact electronic ballast in the base of the lamp.

<span class="mw-page-title-main">Spectral power distribution</span> Measurement describing the power of an illumination

In radiometry, photometry, and color science, a spectral power distribution (SPD) measurement describes the power per unit area per unit wavelength of an illumination. More generally, the term spectral power distribution can refer to the concentration, as a function of wavelength, of any radiometric or photometric quantity.

<span class="mw-page-title-main">Color rendering index</span> Measure of ability of a light source to reproduce colors in comparison with a standard light source

A color rendering index (CRI) is a quantitative measure of the ability of a light source to reveal the colors of various objects faithfully in comparison with a natural or standard light source. Light sources with a high CRI are desirable in color-critical applications such as neonatal care and art restoration.

<span class="mw-page-title-main">Purkinje effect</span> Tendency for sight to shift toward blue colors at low light levels

The Purkinje effect or Purkinje phenomenon is the tendency for the peak luminance sensitivity of the eye to shift toward the blue end of the color spectrum at low illumination levels as part of dark adaptation. In consequence, reds will appear darker relative to other colors as light levels decrease. The effect is named after the Czech anatomist Jan Evangelista Purkyně. While the effect is often described from the perspective of the human eye, it is well established in a number of animals under the same name to describe the general shifting of spectral sensitivity due to pooling of rod and cone output signals as a part of dark/light adaptation.

<span class="mw-page-title-main">Planckian locus</span> Locus of colors of incandescent black bodies within a color space

In physics and color science, the Planckian locus or black body locus is the path or locus that the color of an incandescent black body would take in a particular chromaticity space as the blackbody temperature changes. It goes from deep red at low temperatures through orange, yellowish, white, and finally bluish white at very high temperatures.

<span class="mw-page-title-main">Architectural lighting design</span> Field within architecture, interior design and electrical engineering

Architectural lighting design is a field of work or study that is concerned with the design of lighting systems within the built environment, both interior and exterior. It can include manipulation and design of both daylight and electric light or both, to serve human needs.

In the study of visual perception, scotopic vision is the vision of the eye under low-light conditions. The term comes from the Greek skotos, meaning 'darkness', and -opia, meaning 'a condition of sight'. In the human eye, cone cells are nonfunctional in low visible light. Scotopic vision is produced exclusively through rod cells, which are most sensitive to wavelengths of around 498 nm and are insensitive to wavelengths longer than about 640 nm. Under scotopic conditions, light incident on the retina is not encoded in terms of the spectral power distribution. Higher visual perception occurs under scotopic vision as it does under photopic vision.

<span class="mw-page-title-main">Correlated color temperature</span> Property of light based on human perception

The correlated color temperature is defined as "the temperature of the Planckian radiator whose perceived color most closely resembles that of a given stimulus at the same brightness and under specified viewing conditions."

<span class="mw-page-title-main">Standard illuminant</span> Theoretical source of visible light

A standard illuminant is a theoretical source of visible light with a spectral power distribution that is published. Standard illuminants provide a basis for comparing images or colors recorded under different lighting.

Light effects on circadian rhythm are the response of circadian rhythms to light.

<span class="mw-page-title-main">Surgical lighting</span>

A surgical light – also referred to as an operating light or surgical lighthead – is a medical device intended to assist medical personnel during a surgical procedure by illuminating a local area or cavity of the patient. A combination of several surgical lights is often referred to as a “surgical light system”.

<span class="mw-page-title-main">LED street light</span> LED street light

An LED street light or road light is an integrated light-emitting diode (LED) light fixture that is used for street lighting.

<span class="mw-page-title-main">High-CRI LED lighting</span> LED lighting source

High-CRI LED lighting is a light-emitting diode (LED) lighting source that offers a high color rendering index (CRI).

References

  1. Weintraub, Steven (September 2000). "The Color of White: Is there a "preferred" color temperature for the exhibition of works of art?". Western Association for Art Conservation Newsletter. 21 (3).
  2. Kruithof, Arie Andries (December 12, 1934). "Aanslag van het waterstofmolecuulspectrum door electronen". Archived from the original on July 24, 2011. Retrieved May 6, 2008. (PhD dissertation at Utrecht University under Leonard Ornstein) (in Dutch)
  3. Kruithof, Arie Andries (1941). "Tubular Luminescence Lamps for General Illumination". Philips Technical Review. 6 (3): 65–96. ISSN   0031-7926.
  4. 1 2 3 Davis, RG; Ginthner, DN (1990). "Correlated color temperature, illuminance level and the Kruithof curve". Journal of the Illuminating Engineering Society. Winter: 27–38. doi:10.1080/00994480.1990.10747937.
  5. 1 2 3 Boyce, P.R.; Cuttle, C. (1990). "Effect of correlated colour temperature on the perception of interiors and colour discrimination". Lighting Research & Technology . 22 (1): 19–36. doi: 10.1177/096032719002200102 .
  6. Viénot, Françoise; Marie-Lucie Durand; Elodie Mahler (July 20, 2009). "Kruithof's rule revisited using LED illumination". Journal of Modern Optics. 56 (13): 1433–1446. Bibcode:2009JMOp...56.1433V. doi:10.1080/09500340903151278. S2CID   121921684.
  7. Frisby, John P. (1980). Seeing: Illusion, Brain and Mind . Oxford: Oxford University Press. ISBN   978-0-19-217672-1.
  8. Boyce, Peter R. (2003). "Lighting for offices". Human factors in lighting (2 ed.). London: Taylor & Francis. pp. 245–250. ISBN   978-0-7484-0950-1.
  9. Vienot, F; Durand, M; Mahler, E (2009). "Kruithof's rule revisited using LED illumination". Journal of Modern Optics. 56 (13): 1433–1466. Bibcode:2009JMOp...56.1433V. doi:10.1080/09500340903151278. S2CID   121921684.
  10. Islam, MS; Dangol, R; Hyvärinen, M; Bhusal, P; Ouolakka, M; Halonen, L (2015). "User acceptance studies for LED office lighting: Lamp spectrum, spatial brightness and illuminance". Lighting Research and Technology. 47: 54–79. doi:10.1177/1477153513514425. S2CID   109592929.
  11. Wei, Minchen; Houser, Kevin W.; Orland, Brian; Lang, Dean H.; Ram, Nilam; Sliwinskiwinski, Martin J.; Bose, Mallika (2014). "Field study of office worker responses to fluorescent lighting of different CCT and lumen output". Journal of Environmental Psychology. 39: 62–76. doi:10.1016/j.jenvp.2014.04.009.
  12. Fotios, Steve (January 2, 2017). "A Revised Kruithof Graph Based on Empirical Data". LEUKOS. 13 (1): 3–17. doi: 10.1080/15502724.2016.1159137 . ISSN   1550-2724.
  13. Oi, Naoyuki; Hironobu Takahashi (2007). Preferred Combinations Between Illuminance and Color Temperature in Several Settings for Daily Living Activities (PDF) (Technical report). Kyushu University.
  14. Bodmann, H.W.; G. Sollner; E. Voit (1963). "Evaluation of lighting level with various kinds of light". Proceedings of the CIE. 15.
  15. Han, S. Effect of Illuminance, CCT and Decor on the Perception of Lighting (M.S. thesis). Troy, New York: Rensselaer Polytechnic Institute.

Further reading