White point

Last updated

A white point (often referred to as reference white or target white in technical documents) is a set of tristimulus values or chromaticity coordinates that serve to define the color "white" in image capture, encoding, or reproduction. [1] Depending on the application, different definitions of white are needed to give acceptable results. For example, photographs taken indoors may be lit by incandescent lights, which are relatively orange compared to daylight. Defining "white" as daylight will give unacceptable results when attempting to color-correct a photograph taken with incandescent lighting.

Contents

Illuminants

Diagram of the CIE 1931 color space that shows the Rec. 2020 (UHDTV) color space in the outer triangle and Rec. 709 (HDTV) color space in the inner triangle. Both Rec. 2020 and Rec. 709 use Illuminant D65 for the white point. CIExy1931 Rec 2020 and Rec 709.svg
Diagram of the CIE 1931 color space that shows the Rec. 2020 (UHDTV) color space in the outer triangle and Rec. 709 (HDTV) color space in the inner triangle. Both Rec. 2020 and Rec. 709 use Illuminant D65 for the white point.

An illuminant is characterized by its relative spectral power distribution (SPD). The white point of an illuminant is the chromaticity of a white object under the illuminant, and can be specified by chromaticity coordinates, such as the x, y coordinates on the CIE 1931 chromaticity diagram (hence the use of the relative SPD and not the absolute SPD, because the white point is only related to color and unaffected by intensity). [2]

Illuminant and white point are separate concepts. For a given illuminant, its white point is uniquely defined. A given white point, on the other hand, generally does not uniquely correspond to only one illuminant. From the commonly used CIE 1931 chromaticity diagram, it can be seen that almost all non-spectral colors (all except those on the line of purples), including colors described as white, can be produced by infinitely many combinations of spectral colors, and therefore by infinitely many different illuminant spectra.

Although there is generally no one-to-one correspondence between illuminants and white points, in the case of the CIE D-series standard illuminants, the spectral power distributions are mathematically derivable from the chromaticity coordinates of the corresponding white points. [3]

Knowing the illuminant's spectral power distribution, the reflectance spectrum of the specified white object (often taken as unity), and the numerical definition of the observer allows the coordinates of the white point in any color space to be defined. For example, one of the simplest illuminants is the "E" or "Equal Energy" spectrum. Its spectral power distribution is flat, giving the same power per unit wavelength at any wavelength. In terms of both the 1931 and 1964 CIE XYZ color spaces, its color coordinates are [k, k, k], where k is a constant, and its chromaticity coordinates are [x, y] = [⅓, ⅓].

White point conversion

If the color of an object is recorded under one illuminant, then it is possible to estimate the color of that object under another illuminant, given only the white points of the two illuminants. If the image is "uncalibrated" (the illuminant's white point unknown), the white point has to be estimated. However, if one merely wants to white balance (make neutral objects appear neutral in the recording), this may not be necessary.

Expressing color as tristimulus coordinates in the LMS color space, one can "translate" the object's color according to the Von Kries transform simply by scaling the LMS coordinates by the ratio of the maximum of the tristimulus values at both white points. This provides a simple, but rough estimate. Another method that is sometimes preferred uses a Bradford transform or another chromatic adaptation transform; in general, these work by transforming into an intermediate space, scaling the amounts of the primaries in that space, and converting back by the inverse transform.

To truly calculate the color of an object under another illuminant, not merely how it will be perceived, it is necessary to record multi-spectral or hyper-spectral color information.

Related Research Articles

Color Characteristic of visual perception

Color or colour is the visual perceptual property deriving from the spectrum of light interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associated with objects or materials based on their physical properties such as light absorption, reflection, or emission spectra. By defining a color space colors can be identified numerically by their coordinates.

Color temperature Property of light sources related to black-body radiation

The color temperature of a light source is the temperature of an ideal black-body radiator that radiates light of a color comparable to that of the light source. Color temperature is a characteristic of visible light that has important applications in lighting, photography, videography, publishing, manufacturing, astrophysics, horticulture, and other fields. In practice, color temperature is meaningful only for light sources that do in fact correspond somewhat closely to the color of some black body, i.e., light in a range going from red to orange to yellow to white to blueish white; it does not make sense to speak of the color temperature of, e.g., a green or a purple light. Color temperature is conventionally expressed in kelvins, using the symbol K, a unit of measure for absolute temperature.

Metamerism (color) Colors that appear to match with a specific light source may not match when seen with a different light source. Technical considerations

In colorimetry, metamerism is a perceived matching of colors with different (nonmatching) spectral power distributions. Colors that match this way are called metamers.

CIELAB color space Standard color space with color-opponent values

The CIELAB color space, also referred to as L*a*b*, is a color space defined by the International Commission on Illumination in 1976. It expresses color as three values: L* for perceptual lightness, and a* and b* for the four unique colors of human vision: red, green, blue, and yellow. CIELAB was intended as a perceptually uniform space, where a given numerical change corresponds to a similar perceived change in color. While the LAB space is not truly perceptually uniform, it nevertheless is useful in industry for detecting small differences in color.

Colorimetry is "the science and technology used to quantify and describe physically the human color perception". It is similar to spectrophotometry, but is distinguished by its interest in reducing spectra to the physical correlates of color perception, most often the CIE 1931 XYZ color space tristimulus values and related quantities.

Chromatic adaptation is the human visual system’s ability to adjust to changes in illumination in order to preserve the appearance of object colors. It is responsible for the stable appearance of object colors despite the wide variation of light which might be reflected from an object and observed by our eyes. A chromatic adaptation transform (CAT) function emulates this important aspect of color perception in color appearance models.

The rg chromaticity space, two dimensions of the normalized RGB, or rgb, space, is a chromaticity space, a two-dimensional color space in which there is no intensity information.

Dominant wavelength Any monochromatic spectral light that evokes the corresponding opposite perception of hue

In color science, the dominant wavelength are ways of characterizing any light mixture in terms of the monochromatic spectral light that evokes an identical perception of hue. For a given physical light mixture, the dominant and complementary wavelengths are not entirely fixed, but vary according to the illuminating light's precise color, called the white point, due to the color constancy of vision.

Colorfulness Perceived intensity of a specific color

Colorfulness, chroma and saturation are attributes of perceived color relating to chromatic intensity. As defined formally by the International Commission on Illumination (CIE) they respectively describe three different aspects of chromatic intensity, but the terms are often used loosely and interchangeably in contexts where these aspects are not clearly distinguished. The precise meanings of the terms vary by what other functions they are dependent on.

Adobe RGB color space Color space developed by Adobe

The Adobe RGB (1998) color space or opRGB is a color space developed by Adobe Systems, Inc. in 1998. It was designed to encompass most of the colors achievable on CMYK color printers, but by using RGB primary colors on a device such as a computer display. The Adobe RGB (1998) color space encompasses roughly 50% of the visible colors specified by the CIELAB color space – improving upon the gamut of the sRGB color space, primarily in cyan-green hues. It was subsequently standardized by the IEC as IEC 61966-2-5:1999 with a name opRGB and is used in HDMI.

Color rendering index Measure of ability of a light source to reproduce colors in comparison with a standard light source

A color rendering index (CRI) is a quantitative measure of the ability of a light source to reveal the colors of various objects faithfully in comparison with a natural or standard light source. Light sources with a high CRI are desirable in color-critical applications such as neonatal care and art restoration. It is defined by the International Commission on Illumination (CIE) as follows:

Color rendering: Effect of an illuminant on the color appearance of objects by conscious or subconscious comparison with their color appearance under a reference or standard illuminant.

Color balance Adjustment of color intensities in photography

In photography and image processing, color balance is the global adjustment of the intensities of the colors. An important goal of this adjustment is to render specific colors – particularly neutral colors – correctly. Hence, the general method is sometimes called gray balance, neutral balance, or white balance. Color balance changes the overall mixture of colors in an image and is used for color correction. Generalized versions of color balance are used to correct colors other than neutrals or to deliberately change them for effect. The term white balance is called that way due to the nature of the adjustment in which colors are adjusted to make a white object appear white and not bluish or reddish.

The CIE 1931 color spaces are the first defined quantitative links between distributions of wavelengths in the electromagnetic visible spectrum, and physiologically perceived colors in human color vision. The mathematical relationships that define these color spaces are essential tools for color management, important when dealing with color inks, illuminated displays, and recording devices such as digital cameras. The system was designed in 1931 by the "Commission Internationale de l'éclairage", known in English as the International Commission on Illumination.

LMS color space Color space represented by the response of the three types of cones of the human eye

LMS, is a color space which represents the response of the three types of cones of the human eye, named for their responsivity (sensitivity) peaks at long, medium, and short wavelengths.

Illuminant D65 Standard illuminant defined by the International Commission on Illumination

CIE standard illuminant D65 (sometimes written D65) is a commonly used standard illuminant defined by the International Commission on Illumination (CIE). It is part of the D series of illuminants that try to portray standard illumination conditions at open-air in different parts of the world.

Standard illuminant Theoretical source of visible light

A standard illuminant is a theoretical source of visible light with a spectral power distribution that is published. Standard illuminants provide a basis for comparing images or colors recorded under different lighting.

In colorimetry, the CIE 1976L*, u*, v*color space, commonly known by its abbreviation CIELUV, is a color space adopted by the International Commission on Illumination (CIE) in 1976, as a simple-to-compute transformation of the 1931 CIE XYZ color space, but which attempted perceptual uniformity. It is extensively used for applications such as computer graphics which deal with colored lights. Although additive mixtures of different colored lights will fall on a line in CIELUV's uniform chromaticity diagram, such additive mixtures will not, contrary to popular belief, fall along a line in the CIELUV color space unless the mixtures are constant in lightness.

The color rendering of a light source refers to its ability to reveal the colors of various objects faithfully in comparison with an ideal or natural light source. Light sources with good color rendering are desirable in color-critical applications such as neonatal care and art restoration. It is defined by the International Commission on Illumination (CIE) as follows:

Color rendering: Effect of an illuminant on the color appearance of objects by conscious or subconscious comparison with their color appearance under a reference illuminant.

High-CRI LED lighting LED lighting source

High-CRI LED lighting is a light-emitting diode (LED) lighting source that offers a high color rendering index (CRI).

A color appearance model (CAM) is a mathematical model that seeks to describe the perceptual aspects of human color vision, i.e. viewing conditions under which the appearance of a color does not tally with the corresponding physical measurement of the stimulus source.

References

  1. Kennel, Glenn (2006). Color and Mastering for Digital Cinema. Focal Press. ISBN   0-240-80874-6.
  2. R. E. Jacobson (2000). The Manual of Photography: Photographic and Digital Imaging. Focal Press. ISBN   0-240-51574-9.
  3. Bruce Justin Lindbloom. "Spectral Power Distribution of a CIE D-Illuminant".