LMS (long, medium, short), is a color space which represents the response of the three types of cones of the human eye, named for their responsivity (sensitivity) peaks at long, medium, and short wavelengths.
The numerical range is generally not specified, except that the lower end is generally bounded by zero. It is common to use the LMS color space when performing chromatic adaptation (estimating the appearance of a sample under a different illuminant). It is also useful in the study of color blindness, when one or more cone types are defective.
The cone response functions are the color matching functions for the LMS color space. The chromaticity coordinates (L, M, S) for a spectral distribution are defined as:
The cone response functions are normalized to have their maxima equal to unity.
Typically, colors to be adapted chromatically will be specified in a color space other than LMS (e.g. sRGB). The chromatic adaptation matrix in the diagonal von Kries transform method, however, operates on tristimulus values in the LMS color space. Since colors in most colorspaces can be transformed to the XYZ color space, only one additional transformation matrix is required for any color space to be adapted chromatically: to transform colors from the XYZ color space to the LMS color space. [3]
In addition, many color adaption methods, or color appearance models (CAMs), run a von Kries-style diagonal matrix transform in a slightly modified, LMS-like, space instead. They may refer to it simply as LMS, as RGB, or as ργβ. The following text uses the "RGB" naming, but do note that the resulting space has nothing to do with the additive color model called RGB. [3]
The chromatic adaptation transform (CAT) matrices for some CAMs in terms of CIEXYZ coordinates are presented here. The matrices, in conjunction with the XYZ data defined for the standard observer, implicitly define a "cone" response for each cell type.
Notes:
This article is missing information about how the HPE matrix was derived – looks like the most "physiological" of the XYZ bunch, but where's the data?.(October 2021) |
The Hunt and RLAB color appearance models use the Hunt–Pointer–Estevez transformation matrix (MHPE) for conversion from CIE XYZ to LMS. [4] [5] [6] This is the transformation matrix which was originally used in conjunction with the von Kries transform method, and is therefore also called von Kries transformation matrix (MvonKries).
The original CIECAM97s color appearance model uses the Bradford transformation matrix (MBFD) (as does the LLAB color appearance model). [3] This is a “spectrally sharpened” transformation matrix (i.e. the L and M cone response curves are narrower and more distinct from each other). The Bradford transformation matrix was supposed to work in conjunction with a modified von Kries transform method which introduced a small non-linearity in the S (blue) channel. However, outside of CIECAM97s and LLAB this is often neglected and the Bradford transformation matrix is used in conjunction with the linear von Kries transform method, explicitly so in ICC profiles. [8]
A "spectrally sharpened" matrix is believed to improve chromatic adaptation especially for blue colors, but does not work as a real cone-describing LMS space for later human vision processing. Although the outputs are called "LMS" in the original LLAB incarnation, CIECAM97s uses a different "RGB" name to highlight that this space does not really reflect cone cells; hence the different names here.
LLAB proceeds by taking the post-adaptation XYZ values and performing a CIELAB-like treatment to get the visual correlates. On the other hand, CIECAM97s takes the post-adaptation XYZ value back into the Hunt LMS space, and works from there to model the vision system's calculation of color properties.
A revised version of CIECAM97s switches back to a linear transform method and introduces a corresponding transformation matrix (MCAT97s): [9]
The sharpened transformation matrix in CIECAM02 (MCAT02) is: [10] [3]
CAM16 uses a different matrix: [11]
As in CIECAM97s, after adaptation, the colors are converted to the traditional Hunt–Pointer–Estévez LMS for final prediction of visual results.
From a physiological point of view, the LMS color space describes a more fundamental level of human visual response, so it makes more sense to define the physiopsychological XYZ by LMS, rather than the other way around.
A set of physiologically-based LMS functions were proposed by Stockman & Sharpe in 2000. The functions have been published in a technical report by the CIE in 2006 (CIE 170). [12] [13] The functions are derived from Stiles and Burch [1] RGB CMF data, combined with newer measurements about the contribution of each cone in the RGB functions. To adjust from the 10° data to 2°, assumptions about photopigment density difference and data about the absorption of light by pigment in the lens and the macula lutea are used. [14]
The Stockman & Sharpe functions can then be turned into a set of three color-matching functions similar to the CIE 1931 functions. [15]
Let be the three cone response functions, and let be the new XYZ color matching functions. Then, by definition, the new XYZ color matching functions are:
where the transformation matrix is defined as:
The derivation of this transformation is relatively straightforward. [16] The CMF is the luminous efficiency function originally proposed by Sharpe et al. (2005), [17] but then corrected (Sharpe et al., 2011 [18] [a] ). The CMF is equal to the cone fundamental originally proposed by Stockman, Sharpe & Fach (1999) [19] scaled to have an integral equal to the CMF. The definition of the CMF is derived from the following constraints:
- Like the other CMFs, the values of are all positive.
- The integral of is identical to the integrals for and .
- The coefficients of the transformation that yields are optimized to minimize the Euclidean differences between the resulting , and color matching functions and the CIE 1931 , and color matching functions.
— CVRL description for 'CIE (2012) 2-deg XYZ "physiologically-relevant" colour matching functions' [15]
For any spectral distribution , let be the LMS chromaticity coordinates for , and let be the corresponding new XYZ chromaticity coordinates. Then:
or, explicitly:
The inverse matrix is shown here for comparison with the ones for traditional XYZ:
The above development has the advantage of basing the new XFYFZF color matching functions on the physiologically-based LMS cone response functions. In addition, it offers a one-to-one relationship between the LMS chromaticity coordinates and the new XFYFZF chromaticity coordinates, which was not the case for the CIE 1931 color matching functions. The transformation for a particular color between LMS and the CIE 1931 XYZ space is not unique. It rather depends highly on the particular form of the spectral distribution ) producing the given color. There is no fixed 3x3 matrix which will transform between the CIE 1931 XYZ coordinates and the LMS coordinates, even for a particular color, much less the entire gamut of colors. Any such transformation will be an approximation at best, generally requiring certain assumptions about the spectral distributions producing the color. For example, if the spectral distributions are constrained to be the result of mixing three monochromatic sources, (as was done in the measurement of the CIE 1931 and the Stiles and Burch [1] color matching functions), then there will be a one-to-one relationship between the LMS and CIE 1931 XYZ coordinates of a particular color.
As of Nov 28, 2023, CIE 170-2 CMFs are proposals that have yet to be ratified by the full TC 1-36 committee or by the CIE.
For theoretical purposes, it is often convenient to characterize radiation in terms of photons rather than energy. The energy E of a photon is given by the Planck relation
where E is the energy per photon, h is the Planck constant, c is the speed of light, ν is the frequency of the radiation and λ is the wavelength. A spectral radiative quantity in terms of energy, JE(λ), is converted to its quantal form JQ(λ) by dividing by the energy per photon:
For example, if JE(λ) is spectral radiance with the unit W/m2/sr/m, then the quantal equivalent JQ(λ) characterizes that radiation with the unit photons/s/m2/sr/m.
If CEλi(λ) (i=1,2,3) are the three energy-based color matching functions for a particular color space (LMS color space for the purposes of this article), then the tristimulus values may be expressed in terms of the quantal radiative quantity by:
Define the quantal color matching functions:
where λi max is the wavelength at which CEλi(λ)/λ is maximized. Define the quantal tristimulus values:
Note that, as with the energy based functions, the peak value of CQλi(λ) will be equal to unity. Using the above equation for the energy tristimulus values CEi
For the LMS color space, ≈ {566, 541, 441} nm and
The LMS color space can be used to emulate the way color-blind people see color. An early emulation of dichromats were produced by Brettel et al. 1997 and was rated favorably by actual patients. An example of a state-of-the-art method is Machado et al. 2009. [20]
A related application is making color filters for color-blind people to more easily notice differences in color, a process known as daltonization. [21]
JPEG XL uses an XYB color space derived from LMS. Its transform matrix is shown here:
This can be interpreted as a hybrid color theory where L and M are opponents but S is handled in a trichromatic way, justified by the lower spatial density of S cones. In practical terms, this allows for using less data for storing blue signals without losing much perceived quality. [22]
The colorspace originates from Guetzli's butteraugli metric, [23] and was passed down to JPEG XL via Google's Pik project.
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.
In Euclidean geometry, an affine transformation or affinity is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.
Ray transfer matrix analysis is a mathematical form for performing ray tracing calculations in sufficiently simple problems which can be solved considering only paraxial rays. Each optical element is described by a 2 × 2ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system. The same mathematics is also used in accelerator physics to track particles through the magnet installations of a particle accelerator, see electron optics.
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.
In linear algebra, a Jordan normal form, also known as a Jordan canonical form, is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis. Such a matrix has each non-zero off-diagonal entry equal to 1, immediately above the main diagonal, and with identical diagonal entries to the left and below them.
In mathematics, the Hessian matrix, Hessian or Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed in the 19th century by the German mathematician Ludwig Otto Hesse and later named after him. Hesse originally used the term "functional determinants". The Hessian is sometimes denoted by H or, ambiguously, by ∇2.
In linear algebra, the Frobenius companion matrix of the monic polynomial is the square matrix defined as
In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.
In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional graph, the discrete Laplace operator is more commonly called the Laplacian matrix.
In photography and image processing, color balance is the global adjustment of the intensities of the colors. An important goal of this adjustment is to render specific colors – particularly neutral colors like white or grey – correctly. Hence, the general method is sometimes called gray balance, neutral balance, or white balance. Color balance changes the overall mixture of colors in an image and is used for color correction. Generalized versions of color balance are used to correct colors other than neutrals or to deliberately change them for effect. White balance is one of the most common kinds of balancing, and is when colors are adjusted to make a white object appear white and not a shade of any other colour.
In 1931 the International Commission on Illumination (CIE) published the CIE 1931 color spaces which define the relationship between the visible spectrum and the visual sensation of specific colors by human color vision. The CIE color spaces are mathematical models that create a "standard observer", which attempts to predict the perception of unique hues of color. These color spaces are essential tools that provide the foundation for measuring color for industry, including inks, dyes, and paints, illumination, color imaging, etc. The CIE color spaces contributed to the development of color television, the creation of instruments for maintaining consistent color in manufacturing processes, and other methods of color management.
In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. The study of logarithms of matrices leads to Lie theory since when a matrix has a logarithm then it is in an element of a Lie group and the logarithm is the corresponding element of the vector space of the Lie algebra.
In Hamiltonian mechanics, the linear canonical transformation (LCT) is a family of integral transforms that generalizes many classical transforms. It has 4 parameters and 1 constraint, so it is a 3-dimensional family, and can be visualized as the action of the special linear group SL2(R) on the time–frequency plane (domain). As this defines the original function up to a sign, this translates into an action of its double cover on the original function space.
In the mathematical discipline of matrix theory, a Jordan matrix, named after Camille Jordan, is a block diagonal matrix over a ring R, where each block along the diagonal, called a Jordan block, has the following form:
In mathematics, the structure tensor, also referred to as the second-moment matrix, is a matrix derived from the gradient of a function. It describes the distribution of the gradient in a specified neighborhood around a point and makes the information invariant to the observing coordinates. The structure tensor is often used in image processing and computer vision.
In colorimetry, CIECAM02 is the color appearance model published in 2002 by the International Commission on Illumination (CIE) Technical Committee 8-01 and the successor of CIECAM97s.
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size.
In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.
In mathematics, the quadratic eigenvalue problem (QEP), is to find scalar eigenvalues , left eigenvectors and right eigenvectors such that
The Oklab color space is a uniform color space for device independent color designed to improve perceptual uniformity, hue and lightness prediction, color blending, and usability while ensuring numerical stability and ease of implementation. Introduced by Björn Ottosson in December 2020, Oklab and its cylindrical counterpart, Oklch, have been included in the CSS Color Level 4 and Level 5 drafts for device-independent web colors since December 2021. They are supported by recent versions of major web browsers and allow the specification of wide-gamut P3 colors.
The published MCAT02 matrix in Eq. 9.40 is incorrect (it is a version of the HuntPointer-Estevez matrix. The correct MCAT02 matrix is as follows. It is also given correctly in Eq. 16.2)