TSL color space

Last updated

TSL color space (Tint, Saturation and Lightness ) is a perceptual color space which defines color as tint (the degree to which a stimulus can be described as similar to or different from another stimuli that are described as red, green, blue, yellow, and white, can be thought of as hue with white added), saturation (the colorfulness of a stimulus relative to its own brightness), and lightness (the brightness of a stimulus relative to a stimulus that appears white in similar viewing conditions). Proposed by Jean-Christophe Terrillon and Shigeru Akamatsu, [1] TSL color space was developed primarily for the purpose of face detection.

Contents

Conversion between RGB and TSL

rg chromaticities Rg normalized color coordinates.png
rg chromaticities

The conversion from gamma-corrected RGB values (01) to TSL is straightforward: [1]

where:

Likewise, the reverse transform is as follows: [2]

where:

For T = 0, conversion from TSL to RGB is not unique because the sign of r' is lost by the forward conversion due to the g' = 0 special case. Removing the special case produces a system that deviates from the original paper but preserves the sign.

Advantages of TSL

The advantages of TSL color space lie within the normalization within the RGB-TSL transform. Utilizing normalized r and g allows for chrominance spaces TSL to be more efficient for skin color segmentation. Additionally with this normalization, the sensitivity of the chrominance distributions to the variability of skin color is significantly reduced, allowing for an easier detection of different skin tones. [3]

Comparison of TSL to other color spaces

Terrillon investigated the efficiency of facial detection for several different color spaces. Testing consisted of using the same algorithm with 10 different color spaces to detect faces in 90 images with 133 faces and 59 subjects - 27 Asian, 31 Caucasian, and 1 African). TSL showed superior performance to the other spaces, with 90.8% correct detection and 84.9% correct rejection. A full comparison can be seen in the table below. [3]

Color Space# of ElementsCD (%)CR (%)
TSL25890.884.9
r-g 32874.680.3
CIE-xy38856.683.5
CIE-DSH31860.975.0
HSV 40855.784.7
YIQ47147.379.8
YES49441.680.3
CIELUV 41824.179.0
CIELAB 39938.483.6

Disadvantages of TSL

TSL space could be made more efficient and robust. There currently exists no color correction algorithms for different camera systems. Additionally, despite a better accuracy of skin tone detection, detecting dark skin color still proves to be a challenge. [1]

Applications

Being a relatively new color space and having very specific uses, TSL hasn’t been widely implemented. Again, it is only very useful in skin detection algorithms. Skin detection itself can be used for a variety of applications – face detection, person tracking (for surveillance and cinematographic purposes), and pornography filtering are a few examples. A Self-Organizing Map (SOM) was implemented in skin detection using TSL and achieved comparable results to older methods of histograms and Gaussian mixture models. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Maxwell–Boltzmann distribution</span> Specific probability distribution function, important in physics

In physics, the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann.

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with 4 faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<i>n</i>-sphere Generalized sphere of dimension n (mathematics)

In mathematics, an n-sphere or hypersphere is an n-dimensional generalization of the 1-dimensional circle and 2-dimensional sphere to any non-negative integer n. The n-sphere is the setting for n-dimensional spherical geometry.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Euler's totient function</span> Number of integers coprime to and not exceeding n

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

<span class="mw-page-title-main">Hue</span> Property of a color

In color theory, hue is one of the main properties of a color, defined technically in the CIECAM02 model as "the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, orange, yellow, green, blue, violet," within certain theories of color vision.

<span class="mw-page-title-main">Heron's formula</span> Triangle area in terms of side lengths

In geometry, Heron's formula gives the area of a triangle in terms of the three side lengths a, b, c. Letting be the semiperimeter of the triangle, the area A is

<span class="mw-page-title-main">HSL and HSV</span> Alternative representations of the RGB color model

HSL and HSV are alternative representations of the RGB color model, designed in the 1970s by computer graphics researchers. In these models, colors of each hue are arranged in a radial slice, around a central axis of neutral colors which ranges from black at the bottom to white at the top.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of the trigonometric functions

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

The RGB chromaticity space, two dimensions of the normalized RGB space, is a chromaticity space, a two-dimensional color space in which there is no intensity information.

In number theory, a Heegner number is a square-free positive integer d such that the imaginary quadratic field has class number 1. Equivalently, the ring of algebraic integers of has unique factorization.

<span class="mw-page-title-main">Colorfulness</span> Perceived intensity of a specific color

Colorfulness, chroma and saturation are attributes of perceived color relating to chromatic intensity. As defined formally by the International Commission on Illumination (CIE) they respectively describe three different aspects of chromatic intensity, but the terms are often used loosely and interchangeably in contexts where these aspects are not clearly distinguished. The precise meanings of the terms vary by what other functions they are dependent on.

<span class="mw-page-title-main">Rectangular function</span> Function whose graph is 0, then 1, then 0 again, in an almost-everywhere continuous way

The rectangular function is defined as

<span class="mw-page-title-main">Lemniscate constant</span> Ratio of the perimeter of Bernoullis lemniscate to its diameter

In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.

<span class="mw-page-title-main">CIECAM02</span> Color appearance model

In colorimetry, CIECAM02 is the color appearance model published in 2002 by the International Commission on Illumination (CIE) Technical Committee 8-01 and the successor of CIECAM97s.

In color science, color difference or color distance is the separation between two colors. This metric allows quantified examination of a notion that formerly could only be described with adjectives. Quantification of these properties is of great importance to those whose work is color-critical. Common definitions make use of the Euclidean distance in a device-independent color space.

Volume of an <i>n</i>-ball Size of a mathematical ball

In geometry, a ball is a region in a space comprising all points within a fixed distance, called the radius, from a given point; that is, it is the region enclosed by a sphere or hypersphere. An n-ball is a ball in an n-dimensional Euclidean space. The volume of a n-ball is the Lebesgue measure of this ball, which generalizes to any dimension the usual volume of a ball in 3-dimensional space. The volume of a n-ball of radius R is where is the volume of the unit n-ball, the n-ball of radius 1.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

The YCoCg color model, also known as the YCgCo color model, is the color space formed from a simple transformation of an associated RGB color space into a luma value and two chroma values called chrominance green (Cg) and chrominance orange (Co). It is supported in video and image compression designs such as H.264/MPEG-4 AVC, HEVC, VVC, JPEG XR, and Dirac. It is simple to compute, has good transform coding gain, and can be losslessly converted to and from RGB with fewer bits than are needed with other color models. A reversible scaled version with even lower bit depth, YCoCg-R, is also supported in most of these designs and is also used in Display Stream Compression. The more complete definition with variable bit depths of Y and chrominance values is given in ITU-T H.273.

References

  1. 1 2 3 Terrillon, Jean-Christophe; Akamatsu, Shigeru (1998). Automatic Detection of Human Faces in Natural Scene Images by Use of a Skin Color Model and of Invariant Moments. Proc. Of the Third International Conference on Automatic Face and Gesture Recognition. Nara, Japan. pp. 130–135.
  2. Dmitry Ivanov (21 June 2023). "Color-space: tsl.js". GitHub.
  3. 1 2 Terrillon, Jean-Christophe; Akamatsu, Shigeru (1999). "Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images". Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580). Vol. 99. pp. 54–61. doi:10.1109/AFGR.2000.840612. ISBN   0-7695-0580-5. S2CID   39824480.
  4. Brown, D.; Craw, I.; Lewthwaite, J. (2001). A SOM Based Approach to Skin Detection with Application in Real Time Systems. British Machine Vision Conference. Manchester, United Kingdom.