Color difference

Last updated

In color science, color difference or color distance is the separation between two colors. This metric allows quantified examination of a notion that formerly could only be described with adjectives. Quantification of these properties is of great importance to those whose work is color-critical. Common definitions make use of the Euclidean distance in a device-independent color space.

Contents

Euclidean

sRGB

As most definitions of color difference are distances within a color space, the standard means of determining distances is the Euclidean distance. If one presently has an RGB (red, green, blue) tuple and wishes to find the color difference, computationally one of the easiest is to consider R, G, B linear dimensions defining the color space.

A very simple example can be given between the two colors with RGB values (0, 64, 0) () and (255, 64, 0) (): their distance is 255. Going from there to (255, 64, 128) () is a distance of 128.

When we wish to calculate distance from the first point to the third point (i.e. changing more than one of the color values), we can do this:

When the result should be computationally simple as well, it is often acceptable to remove the square root and simply use

This will work in cases when a single color WAS to be compared to a single color and the need is to simply know whether a distance is greater. If these squared color distances are summed, such a metric effectively becomes the variance of the color distances.

There have been many attempts to weigh RGB values to better fit human perception, where the components are commonly weighted (red 30%, green 59%, and blue 11%), however, these are demonstrably[ citation needed ] worse at color determinations and are properly the contributions to the brightness of these colors, rather than to the degree to which human vision has less tolerance for these colors. The closer approximations would be more properly (for non-linear sRGB, using a color range of 0255): [1]

where:

One of the better low-cost approximations, sometimes called "redmean", combines the two cases smoothly: [1]

There are a number of color distance formulae that attempt to use color spaces like HSV or HSL with the hue represented as a circle, placing the various colors within a three-dimensional space of either a cylinder or cone, but most of these are just modifications of RGB; without accounting for differences in human color perception, they will tend to be on par with a simple Euclidean metric.[ citation needed ]

Uniform color spaces

CIELAB and CIELUV are relatively perceptually-uniform color spaces and they have been used as spaces for Euclidean measures of color difference. The CIELAB version is known as CIE76. However, the non-uniformity of these spaces were later discovered, leading to the creation of more complex formulae.

Uniform color space: a color space in which equivalent numerical differences represent equivalent visual differences, regardless of location within the color space. A truly uniform color space has been the goal of color scientists for many years. Most color spaces, though not perfectly uniform, are referred to as uniform color spaces, since they are more nearly uniform when compared to the chromaticity diagram.

X-rite glossary [2]

A uniform color space is supposed to make a simple measure of color difference, usually Euclidean, "just work". Color spaces that improve on this issue include CAM02-UCS, CAM16-UCS, and Jzazbz. [3]

Rec. ITU-R BT.2124 or ΔEITP

In 2019 a new standard for WCG and HDR was introduced, since CIEDE2000 was not adequate for it: CIEDE2000 is not reliable below 1 cd/m2 and has not been verified above 100 cd/m2; in addition, even in BT.709 blue primary CIEDE2000 is underpredicting the error. [4] ΔEITP is scaled so that a value of 1 indicates the potential of a just noticeable color difference. The ΔEITP color difference metric is derived from display referenced ICTCP, but XYZ is also available in the standard. The formula is a simply scaled Euclidean distance: [5]

where the components of this "ITP" is given by

I = I,
T = 0.5 CT,
P = CP.

Other geometric constructions

The Euclidean measure is known to work poorly on large color distances (i.e. more than 10 units in most systems). A hybrid approach where a taxicab distance is used between the lightness and the chroma plane, , is shown to work better on CIELAB. [6]

CIELAB ΔE*

The International Commission on Illumination (CIE) calls their distance metric ΔE* (also inaccurately called dE*, dE, or "Delta E") where delta is a Greek letter often used to denote difference, and E stands for Empfindung; German for "sensation". Use of this term can be traced back to Hermann von Helmholtz and Ewald Hering. [7] [8]

Perceptual non-uniformities in the underlying CIELAB color space have led to the CIE refining their definition over the years, leading to the superior (as recommended by the CIE) 1994 and 2000 formulas. [9] These non-uniformities are important because the human eye is more sensitive to certain colors than others. CIELAB metric is used to define color tolerance of CMYK solids. A good metric should take this into account in order for the notion of a "just noticeable difference" (JND) to have meaning. Otherwise, a certain ΔE may be insignificant between two colors in one part of the color space while being significant in some other part. [10]

All ΔE* formulae are originally designed to have the difference of 1.0 stand for a JND. This convention is generally followed by other perceptual distance functions such as the aforementioned ΔEITP. [11] However, further experimentation may invalidate this design assumption, the revision of CIE76 ΔE*ab JND to 2.3 being an example. [12]

CIE76

The 1976 formula is the first formula that related a measured color difference to a known set of CIELAB coordinates. This formula has been succeeded by the 1994 and 2000 formulas because the CIELAB space turned out to be not as perceptually uniform as intended, especially in the saturated regions. This means that this formula rates these colors too highly as opposed to other colors.

Given two colors in CIELAB color space, and , the CIE76 color difference formula is defined as:

corresponds to a JND (just noticeable difference). [12]

CIE94

The 1976 definition was extended to address perceptual non-uniformities, while retaining the CIELAB color space, by the introduction of application-specific weights derived from an automotive paint test's tolerance data. [11]

ΔE (1994) is defined in the L*C*h* color space with differences in lightness, chroma and hue calculated from L*a*b* coordinates. Given a reference color [lower-alpha 1] and another color , the difference is [13] [14] [15]

where

and where kC and kH are usually both unity, and the weighting factors kL, K1 and K2 depend on the application:

graphic artstextiles
12
0.0450.048
0.0150.014

Geometrically, the quantity corresponds to the arithmetic mean of the chord lengths of the equal chroma circles of the two colors. [16]

CIEDE2000

Since the 1994 definition did not adequately resolve the perceptual uniformity issue, the CIE refined their definition, adding five corrections: [17] [18]

Note: The formulae below should use degrees rather than radians; the issue is significant for RT.
The kL, kC, and kH are usually unity.
Note: The inverse tangent (tan1) can be computed using a common library routine atan2(b, a) which usually has a range from π to π radians; color specifications are given in 0 to 360 degrees, so some adjustment is needed. The inverse tangent is indeterminate if both a and b are zero (which also means that the corresponding C is zero); in that case, set the hue angle to zero. See Sharma 2005 , eqn. 7.
Note: The example above expects the parameter order of atan2 to be atan2(y, x). See implementation in [20]
Note: When either C1 or C2 is zero, then Δh is irrelevant and may be set to zero. See Sharma 2005 , eqn. 10.
Note: When either C1 or C2 is zero, then H is h1+h2 (no divide by 2; essentially, if one angle is indeterminate, then use the other angle as the average; relies on indeterminate angle being set to zero). See Sharma 2005 , eqn. 7 and p. 23 stating most implementations on the internet at the time had "an error in the computation of average hue".

CMC l:c (1984)

In 1984, the Colour Measurement Committee of the Society of Dyers and Colourists defined a difference measure, also based on the L*C*h color model. Named after the developing committee, their metric is called CMC l:c. The quasimetric has two parameters: lightness (l) and chroma (c), allowing the users to weight the difference based on the ratio of l:c that is deemed appropriate for the application. Commonly used values are 2:1 [21] for acceptability and 1:1 for the threshold of imperceptibility.

The distance of a color to a reference is: [22]

CMC l:c is designed to be used with D65 and the CIE Supplementary Observer. [23] As with CIE94, this formula defines a quasimetric because it violates symmetry: parameter T is based on the hue of the reference alone.

Tolerance

A MacAdam diagram in the CIE 1931 color space. The ellipses are shown ten times their actual size. CIExy1931 MacAdam.png
A MacAdam diagram in the CIE 1931 color space. The ellipses are shown ten times their actual size.

Tolerancing concerns the question "What is a set of colors that are imperceptibly/acceptably close to a given reference?" If the distance measure is perceptually uniform, then the answer is simply "the set of points whose distance to the reference is less than the just-noticeable-difference (JND) threshold". This requires a perceptually uniform metric in order for the threshold to be constant throughout the gamut (range of colors). Otherwise, the threshold will be a function of the reference color—cumbersome as a practical guide.

In the CIE 1931 color space, for example, the tolerance contours are defined by the MacAdam ellipse, which holds L* (lightness) fixed. As can be observed on the adjacent diagram, the ellipses denoting the tolerance contours vary in size. It is partly this non-uniformity that led to the creation of CIELUV and CIELAB.

More generally, if the lightness is allowed to vary, then we find the tolerance set to be ellipsoidal. Increasing the weighting factor in the aforementioned distance expressions has the effect of increasing the size of the ellipsoid along the respective axis. [24]

See also

Footnotes

Notes

  1. Called such because the operator is not commutative. This makes it a quasimetric. Specifically, both depend on only.

Related Research Articles

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Hue</span> Property of a color

In color theory, hue is one of the main properties of a color, defined technically in the CIECAM02 model as "the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, orange, yellow, green, blue, violet," within certain theories of color vision.

<span class="mw-page-title-main">Fabry–Pérot interferometer</span> Optical device with parallel mirrors

In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces. Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".

<span class="mw-page-title-main">HSL and HSV</span> Alternative representations of the RGB color model

HSL and HSV are the two most common cylindrical-coordinate representations of points in an RGB color model. The two representations rearrange the geometry of RGB in an attempt to be more intuitive and perceptually relevant than the cartesian (cube) representation. Developed in the 1970s for computer graphics applications, HSL and HSV are used today in color pickers, in image editing software, and less commonly in image analysis and computer vision.

<span class="mw-page-title-main">CIELAB color space</span> Standard color space with color-opponent values

The CIELAB color space, also referred to as L*a*b*, is a color space defined by the International Commission on Illumination in 1976. It expresses color as three values: L* for perceptual lightness and a* and b* for the four unique colors of human vision: red, green, blue and yellow. CIELAB was intended as a perceptually uniform space, where a given numerical change corresponds to a similar perceived change in color. While the LAB space is not truly perceptually uniform, it nevertheless is useful in industry for detecting small differences in color.

<span class="mw-page-title-main">Colorfulness</span> Perceived intensity of a specific color

Colorfulness, chroma and saturation are attributes of perceived color relating to chromatic intensity. As defined formally by the International Commission on Illumination (CIE) they respectively describe three different aspects of chromatic intensity, but the terms are often used loosely and interchangeably in contexts where these aspects are not clearly distinguished. The precise meanings of the terms vary by what other functions they are dependent on.

<span class="mw-page-title-main">Spherical cap</span> Section of a sphere

In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere, so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a hemisphere.

<span class="mw-page-title-main">Arc length</span> Distance along a curve

Arc length is the distance between two points along a section of a curve.

<span class="mw-page-title-main">Torricelli's law</span> Theorem in fluid mechanics

Torricelli's law, also known as Torricelli's theorem, is a theorem in fluid dynamics relating the speed of fluid flowing from an orifice to the height of fluid above the opening. The law states that the speed of efflux of a fluid through a sharp-edged hole at the bottom of the tank filled to a depth is the same as the speed that a body would acquire in falling freely from a height , i.e. , where is the acceleration due to gravity. This expression comes from equating the kinetic energy gained, , with the potential energy lost, , and solving for . The law was discovered by the Italian scientist Evangelista Torricelli, in 1643. It was later shown to be a particular case of Bernoulli's principle.

Adams chromatic valence color spaces are a class of color spaces suggested by Elliot Quincy Adams. Two important Adams chromatic valence spaces are CIELUV and Hunter Lab.

<span class="mw-page-title-main">Lightness</span> Property of a color

Lightness is a visual perception of the luminance of an object. It is often judged relative to a similarly lit object. In colorimetry and color appearance models, lightness is a prediction of how an illuminated color will appear to a standard observer. While luminance is a linear measurement of light, lightness is a linear prediction of the human perception of that light.

In colorimetry, the CIE 1976L*, u*, v*color space, commonly known by its abbreviation CIELUV, is a color space adopted by the International Commission on Illumination (CIE) in 1976, as a simple-to-compute transformation of the 1931 CIE XYZ color space, but which attempted perceptual uniformity. It is extensively used for applications such as computer graphics which deal with colored lights. Although additive mixtures of different colored lights will fall on a line in CIELUV's uniform chromaticity diagram, such additive mixtures will not, contrary to popular belief, fall along a line in the CIELUV color space unless the mixtures are constant in lightness.

<span class="mw-page-title-main">CIECAM02</span> Color appearance model

In colorimetry, CIECAM02 is the color appearance model published in 2002 by the International Commission on Illumination (CIE) Technical Committee 8-01 and the successor of CIECAM97s.

The CIE 1964 (U*, V*, W*) color space, also known as CIEUVW, is based on the CIE 1960 UCS:

In colorimetry the OSA-UCS is a color space first published in 1947 and developed by the Optical Society of America’s Committee on Uniform Color Scales. Previously created color order systems, such as the Munsell color system, failed to represent perceptual uniformity in all directions. The committee decided that, in order to accurately represent uniform color differences in each direction, a new shape of three dimensional Cartesian geometry would need to be used.

<span class="mw-page-title-main">Geographical distance</span> Distance measured along the surface of the Earth

Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length.

In mathematics, Sobolev spaces for planar domains are one of the principal techniques used in the theory of partial differential equations for solving the Dirichlet and Neumann boundary value problems for the Laplacian in a bounded domain in the plane with smooth boundary. The methods use the theory of bounded operators on Hilbert space. They can be used to deduce regularity properties of solutions and to solve the corresponding eigenvalue problems.

<span class="mw-page-title-main">Lie algebra extension</span> Creating a "larger" Lie algebra from a smaller one, in one of several ways

In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.

Hunter Lab is a color space defined in 1948 by Richard S. Hunter. It was designed to be computed via simple formulas from the CIEXYZ space, but to be more perceptually uniform. Hunter named his coordinates L, a and b. Hunter Lab was a precursor to CIELAB, created in 1976 by the International Commission on Illumination (CIE), which named the coordinates for CIELAB as L*, a*, b* to distinguish them from Hunter's coordinates.

References

  1. 1 2 "Colour metric". Compu Phase.
  2. "Color Glossary". X-Rite.
  3. Li, Changjun; Li, Zhiqiang; Wang, Zhifeng; et al. (December 2017). "Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS". Color Research & Application. 42 (6): 703–718. doi:10.1002/col.22131.
  4. "What Is ICtCp – Introduction?" (PDF). Dolby. Version 7.1. Archived (PDF) from the original on 2016-05-08.
  5. "Objective metric for the assessment of the potential visibility of colour differences in television" (PDF). BT Series: Broadcasting service (television). International Telecommunication Union. January 2019. Recommendation ITU-R BT.2124-0.
  6. Abasi, Saeedeh; Amani Tehran, Mohammad; Fairchild, Mark D. (April 2020). "Distance metrics for very large color differences". Color Research & Application. 45 (2): 208–223. doi:10.1002/col.22451. S2CID   209914019.
  7. Backhaus, W.; Kliegl, R.; Werner, J. S. (1998). Color Vision: Perspectives from Different Disciplines. Walter de Gruyter. p. 188. ISBN   9783110154313 . Retrieved 2014-12-02.
  8. Valberg, A. (2005). Light Vision Color. Wiley. p. 278. ISBN   9780470849026 . Retrieved 2014-12-02.
  9. Fraser, Bruce; Bunting, Fred; Murphy, Chris (2004). Real World Color Management (2nd ed.). Pearson Education. ISBN   9780132777957.
  10. Evaluation of the CIE Color Difference Formulas
  11. 1 2 "Delta E: The Color Difference". Colorwiki.com. Retrieved 2009-04-16.
  12. 1 2 Sharma, Gaurav (2003). Digital Color Imaging Handbook (1.7.2 ed.). CRC Press. ISBN   0-8493-0900-X.
  13. Lindbloom, Bruce Justin. "Delta E (CIE 1994)". Brucelindbloom.com. Retrieved 2011-03-23.
  14. "Colour Difference Software by David Heggie". Colorpro.com. 1995-12-19. Retrieved 2009-04-16.
  15. Colorimetry - Part 4: CIE 1976 L*a*b* Colour Space (Report). Draft Standard. CIE. 2007. CIE DS 014-4.3/E:2007.
  16. Klein, Georg A. (2010-05-18). Industrial Color Physics . Springer. p.  147. ISBN   978-1-4419-1196-4.
  17. Sharma, Gaurav; Wu, Wencheng; Dalal, Edul N. (2005). "The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations" (PDF). Color Research & Application. 30 (1). Wiley Interscience: 21–30. doi:10.1002/col.20070.
  18. Lindbloom, Bruce Justin. "Delta E (CIE 2000)". Brucelindbloom.com. Retrieved 2009-04-16.
  19. The "Blue Turns Purple" Problem, Bruce Lindbloom
  20. Sharma, Gaurav. "The CIEDE2000 Color-Difference Formula". "Excel spreadsheet" hyperlink. Retrieved 2023-10-24.
  21. Meaning that the lightness contributes half as much to the difference (or, identically, is allowed twice the tolerance) as the chroma
  22. Lindbloom, Bruce Justin. "Delta E (CMC)". Brucelindbloom.com. Retrieved 2009-04-16.
  23. "CMC" (PDF). Insight on Color. 8 (13). 1–15 October 1996. Archived from the original (PDF) on 2006-03-12.
  24. Susan Hughes (14 January 1998). "A guide to Understanding Color Tolerancing" (PDF). Archived from the original (PDF) on 10 October 2015. Retrieved 2014-12-02.

Further reading