Local hidden-variable theory

Last updated

In the interpretation of quantum mechanics, a local hidden-variable theory is a hidden-variable theory that satisfies the principle of locality. These models attempt to account for the probabilistic features of quantum mechanics via the mechanism of underlying, but inaccessible variables, with the additional requirement that distant events be statistically independent.

Contents

The mathematical implications of a local hidden-variable theory with regards to quantum entanglement were explored by physicist John Stewart Bell, who in 1964 proved that broad classes of local hidden-variable theories cannot reproduce the correlations between measurement outcomes that quantum mechanics predicts, a result since confirmed by a range of detailed Bell test experiments. [1]

Models

Single qubit

A collection of related theorems, beginning with Bell's proof in 1964, show that quantum mechanics is incompatible with local hidden variables. However, as Bell pointed out, restricted sets of quantum phenomena can be imitated using local hidden-variable models. Bell provided a local hidden-variable model for quantum measurements upon a spin-1/2 particle, or in the terminology of quantum information theory, a single qubit. [2] Bell's model was later simplified by N. David Mermin, and a closely related model was presented by Simon B. Kochen and Ernst Specker. [3] [4] [5] The existence of these models is related to the fact that Gleason's theorem does not apply to the case of a single qubit. [6]

Bipartite quantum states

Bell also pointed out that up until then, discussions of quantum entanglement focused on cases where the results of measurements upon two particles were either perfectly correlated or perfectly anti-correlated. These special cases can also be explained using local hidden variables. [2] [7] [8]

For separable states of two particles, there is a simple hidden-variable model for any measurements on the two parties. Surprisingly, there are also entangled states for which all von Neumann measurements can be described by a hidden-variable model. [9] Such states are entangled, but do not violate any Bell inequality. The so-called Werner states are a single-parameter family of states that are invariant under any transformation of the type where is a unitary matrix. For two qubits, they are noisy singlets given as

where the singlet is defined as .

Reinhard F. Werner showed that such states allow for a hidden-variable model for , while they are entangled if . The bound for hidden-variable models could be improved until . [10] Hidden-variable models have been constructed for Werner states even if positive operator-valued measurements (POVM) are allowed, not only von Neumann measurements. [11] Hidden variable models were also constructed to noisy maximally entangled states, and even extended to arbitrary pure states mixed with white noise. [12] Beside bipartite systems, there are also results for the multipartite case. A hidden-variable model for any von Neumann measurements at the parties has been presented for a three-qubit quantum state. [13]

Time-dependent variables

Previously some new hypotheses were conjectured concerning the role of time in constructing hidden-variables theory. One approach was suggested by K. Hess and W. Philipp and relies upon possible consequences of time dependencies of hidden variables; this hypothesis has been criticized by Richard D. Gill, Gregor Weihs  [ de ], Anton Zeilinger and Marek Żukowski, as well as D. M. Appleby. [14] [15] [16]

See also

Related Research Articles

<span class="mw-page-title-main">Einstein–Podolsky–Rosen paradox</span> Historical critique of quantum mechanics

The Einstein–Podolsky–Rosen (EPR) paradox is a thought experiment proposed by physicists Albert Einstein, Boris Podolsky and Nathan Rosen which argues that the description of physical reality provided by quantum mechanics is incomplete. In a 1935 paper titled "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?", they argued for the existence of "elements of reality" that were not part of quantum theory, and speculated that it should be possible to construct a theory containing these hidden variables. Resolutions of the paradox have important implications for the interpretation of quantum mechanics.

In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theorem is an evolution of the 1970 no-go theorem authored by James Park, in which he demonstrates that a non-disturbing measurement scheme which is both simple and perfect cannot exist. The aforementioned theorems do not preclude the state of one system becoming entangled with the state of another as cloning specifically refers to the creation of a separable state with identical factors. For example, one might use the controlled NOT gate and the Walsh–Hadamard gate to entangle two qubits without violating the no-cloning theorem as no well-defined state may be defined in terms of a subsystem of an entangled state. The no-cloning theorem concerns only pure states whereas the generalized statement regarding mixed states is known as the no-broadcast theorem.

<span class="mw-page-title-main">Quantum teleportation</span> Physical phenomenon

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

<span class="mw-page-title-main">Qubit</span> Basic unit of quantum information

In quantum computing, a qubit or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two spin states can also be measured as horizontal and vertical linear polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of multiple states simultaneously, a property that is fundamental to quantum mechanics and quantum computing.

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between quantum systems

Quantum entanglement is the phenomenon that occurs when a duet of particles are generated, interact, or share spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light. "Hidden variables" are putative properties of quantum particles that are not included in quantum theory but nevertheless affect the outcome of experiments. In the words of physicist John Stewart Bell, for whom this family of results is named, "If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."

In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint—on the statistical occurrence of "coincidences" in a Bell test—which is necessarily true if an underlying local hidden-variable theory exists. In practice, the inequality is routinely violated by modern experiments in quantum mechanics.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.

A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables to explain the behavior of particles like photons and electrons. As of 2015, all Bell tests have found that the hypothesis of local hidden variables is inconsistent with the way that physical systems behave.

Quantum error correction (QEC) is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum preparation, and faulty measurements. This would allow algorithms of greater circuit depth.

<span class="mw-page-title-main">Greenberger–Horne–Zeilinger state</span> "Highly entangled" quantum state of 3 or more qubits

In physics, in the area of quantum information theory, a Greenberger–Horne–Zeilinger state is a certain type of entangled quantum state that involves at least three subsystems. The four-particle version was first studied by Daniel Greenberger, Michael Horne and Anton Zeilinger in 1989, and the three-particle version was introduced by N. David Mermin in 1990. Extremely non-classical properties of the state have been observed. GHZ states for large numbers of qubits are theorized to give enhanced performance for metrology compared to other qubit superposition states.

The W state is an entangled quantum state of three qubits which in the bra-ket notation has the following shape

Time-bin encoding is a technique used in quantum information science to encode a qubit of information on a photon. Quantum information science makes use of qubits as a basic resource similar to bits in classical computing. Qubits are any two-level quantum mechanical system; there are many different physical implementations of qubits, one of which is time-bin encoding.

In theoretical physics, quantum nonlocality refers to the phenomenon by which the measurement statistics of a multipartite quantum system do not allow an interpretation with local realism. Quantum nonlocality has been experimentally verified under a variety of physical assumptions. Any physical theory that aims at superseding or replacing quantum theory should account for such experiments and therefore cannot fulfill local realism; quantum nonlocality is a property of the universe that is independent of our description of nature.

<span class="mw-page-title-main">One-way quantum computer</span> Method of quantum computing

The one-way or measurement-based quantum computer (MBQC) is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.

In quantum information and quantum computing, a cluster state is a type of highly entangled state of multiple qubits. Cluster states are generated in lattices of qubits with Ising type interactions. A cluster C is a connected subset of a d-dimensional lattice, and a cluster state is a pure state of the qubits located on C. They are different from other types of entangled states such as GHZ states or W states in that it is more difficult to eliminate quantum entanglement in the case of cluster states. Another way of thinking of cluster states is as a particular instance of graph states, where the underlying graph is a connected subset of a d-dimensional lattice. Cluster states are especially useful in the context of the one-way quantum computer. For a comprehensible introduction to the topic see.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

Quantum contextuality is a feature of the phenomenology of quantum mechanics whereby measurements of quantum observables cannot simply be thought of as revealing pre-existing values. Any attempt to do so in a realistic hidden-variable theory leads to values that are dependent upon the choice of the other (compatible) observables which are simultaneously measured. More formally, the measurement result of a quantum observable is dependent upon which other commuting observables are within the same measurement set.

<span class="mw-page-title-main">Quantum complex network</span> Notion in network science of quantum information networks

Quantum complex networks are complex networks whose nodes are quantum computing devices. Quantum mechanics has been used to create secure quantum communications channels that are protected from hacking. Quantum communications offer the potential for secure enterprise-scale solutions.

In quantum physics, the "monogamy" of quantum entanglement refers to the fundamental property that it cannot be freely shared between arbitrarily many parties.

References

  1. Markoff, Jack (21 October 2015). "Sorry, Einstein. Quantum Study Suggests 'Spooky Action' Is Real". New York Times .
  2. 1 2 Bell, J. S. (1964). "On the Einstein Podolsky Rosen Paradox" (PDF). Physics Physique Физика . 1 (3): 195–200. doi:10.1103/PhysicsPhysiqueFizika.1.195.
  3. Kochen, S.; Specker, E. (1967). "The Problem of Hidden Variables in Quantum Mechanics". Journal of Mathematics and Mechanics. 17 (1): 59–87. JSTOR   24902153.
  4. Mermin, N. David (1993-07-01). "Hidden variables and the two theorems of John Bell". Reviews of Modern Physics . 65 (3): 803–815. arXiv: 1802.10119 . Bibcode:1993RvMP...65..803M. doi:10.1103/RevModPhys.65.803. S2CID   119546199.
  5. Harrigan, Nicholas; Spekkens, Robert W. (2010-02-01). "Einstein, Incompleteness, and the Epistemic View of Quantum States". Foundations of Physics. 40 (2): 125–157. arXiv: 0706.2661 . doi:10.1007/s10701-009-9347-0. ISSN   1572-9516. S2CID   32755624.
  6. Budroni, Costantino; Cabello, Adán; Gühne, Otfried; Kleinmann, Matthias; Larsson, Jan-Åke (2022-12-19). "Kochen-Specker contextuality". Reviews of Modern Physics. 94 (4): 045007. doi:10.1103/RevModPhys.94.045007. hdl: 11441/144776 . ISSN   0034-6861. S2CID   251951089.
  7. Ou, Z. Y.; Pereira, S. F.; Kimble, H. J.; Peng, K. C. (1992-06-22). "Realization of the Einstein-Podolsky-Rosen paradox for continuous variables". Physical Review Letters. 68 (25): 3663–3666. doi:10.1103/PhysRevLett.68.3663. ISSN   0031-9007. PMID   10045765.
  8. Bartlett, Stephen D.; Rudolph, Terry; Spekkens, Robert W. (2012-07-10). "Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction". Physical Review A. 86 (1): 012103. arXiv: 1111.5057 . Bibcode:2012PhRvA..86a2103B. doi:10.1103/PhysRevA.86.012103. ISSN   1050-2947. S2CID   119235025.
  9. R. F. Werner (1989). "Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model". Physical Review A . 40 (8): 4277–4281. Bibcode:1989PhRvA..40.4277W. doi:10.1103/PhysRevA.40.4277. PMID   9902666.
  10. A. Acín; N. Gisin; B. Toner (2006). "Grothendieck's constant and local models for noisy entangled quantum states". Physical Review A . 73 (6): 062105. arXiv: quant-ph/0606138 . Bibcode:2006PhRvA..73f2105A. doi:10.1103/PhysRevA.73.062105. S2CID   2588399.
  11. J. Barrett (2002). "Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality". Physical Review A . 65 (4): 042302. arXiv: quant-ph/0107045 . Bibcode:2002PhRvA..65d2302B. doi:10.1103/PhysRevA.65.042302. S2CID   119390251.
  12. Almeida, Mafalda L.; Pironio, Stefano; Barrett, Jonathan; Tóth, Géza; Acín, Antonio (23 July 2007). "Noise Robustness of the Nonlocality of Entangled Quantum States". Physical Review Letters. 99 (4): 040403. arXiv: quant-ph/0703018 . doi:10.1103/PhysRevLett.99.040403. PMID   17678341. S2CID   7102567.
  13. G. Tóth; A. Acín (2006). "Genuine tripartite entangled states with a local hidden-variable model". Physical Review A . 74 (3): 030306. arXiv: quant-ph/0512088 . Bibcode:2006PhRvA..74c0306T. doi:10.1103/PhysRevA.74.030306. S2CID   4792051.
  14. Hess, K; Philipp, W (March 2002). "Exclusion of time in the theorem of Bell". Europhysics Letters (EPL). 57 (6): 775–781. doi:10.1209/epl/i2002-00578-y. ISSN   0295-5075. S2CID   250792546.
  15. Gill, R. D.; Weihs, G.; Zeilinger, A.; Zukowski, M. (2002-11-12). "No time loophole in Bell's theorem: The Hess-Philipp model is nonlocal". Proceedings of the National Academy of Sciences. 99 (23): 14632–14635. arXiv: quant-ph/0208187 . doi: 10.1073/pnas.182536499 . ISSN   0027-8424. PMC   137470 . PMID   12411576.
  16. Appleby, D. M. (2003). "The Hess-Philipp Model is Non-Local". International Journal of Quantum Information. 1 (1): 29–36. arXiv: quant-ph/0210145 . Bibcode:2002quant.ph.10145A. doi:10.1142/S021974990300005X.