Objective-collapse theory

Last updated

Objective-collapse theories, also known as models of spontaneous wave function collapse or dynamical reduction models, [1] [2] were formulated as a response to the measurement problem in quantum mechanics, [3] to explain why and how quantum measurements always give definite outcomes, not a superposition of them as predicted by the Schrödinger equation, and more generally how the classical world emerges from quantum theory. The fundamental idea is that the unitary evolution of the wave function describing the state of a quantum system is approximate. It works well for microscopic systems, but progressively loses its validity when the mass / complexity of the system increases.

Contents

In collapse theories, the Schrödinger equation is supplemented with additional nonlinear and stochastic terms (spontaneous collapses) which localize the wave function in space. The resulting dynamics is such that for microscopic isolated systems the new terms have a negligible effect; therefore, the usual quantum properties are recovered, apart from very tiny deviations. Such deviations can potentially be detected in dedicated experiments, and efforts are increasing worldwide towards testing them.

An inbuilt amplification mechanism makes sure that for macroscopic systems consisting of many particles, the collapse becomes stronger than the quantum dynamics. Then their wave function is always well-localized in space, so well-localized that it behaves, for all practical purposes, like a point moving in space according to Newton's laws.

In this sense, collapse models provide a unified description of microscopic and macroscopic systems, avoiding the conceptual problems associated to measurements in quantum theory.

The most well-known examples of such theories are:

Collapse theories stand in opposition to many-worlds interpretation theories, in that they hold that a process of wave function collapse curtails the branching of the wave function and removes unobserved behaviour.

History of collapse theories

The genesis of collapse models dates back to the 1970s. In Italy, the group of L. Fonda, G.C. Ghirardi and A. Rimini was studying how to derive the exponential decay law [4] in decay processes, within quantum theory. In their model, an essential feature was that, during the decay, particles undergo spontaneous collapses in space, an idea that was later carried over to characterize the GRW model. Meanwhile, P. Pearle in the USA was developing nonlinear and stochastic equations, to model the collapse of the wave function in a dynamical way; [5] [6] [7] this formalism was later used for the CSL model. However, these models lacked the character of “universality” of the dynamics, i.e. its applicability to an arbitrary physical system (at least at the non-relativistic level), a necessary condition for any model to become a viable option.

The breakthrough came in 1986, when Ghirardi, Rimini and Weber published the paper with the meaningful title “Unified dynamics for microscopic and macroscopic systems”, [8] where they presented what is now known as the GRW model, after the initials of the authors. The model contains all the ingredients a collapse model should have:

In 1990 the efforts for the GRW group on one side, and of P. Pearle on the other side, were brought together in formulating the Continuous Spontaneous Localization (CSL) model, [9] [10] where the Schrödinger dynamics and the random collapse are described within one stochastic differential equation, which is capable of describing also systems of identical particles, a feature which was missing in the GRW model.

In the late 1980s and 1990s, Diosi [11] [12] and Penrose [13] [14] independently formulated the idea that the wave function collapse is related to gravity. The dynamical equation is structurally similar to the CSL equation.

In the context of collapse models, it is worthwhile to mention the theory of quantum state diffusion. [15]

Three are the models, which are most widely discussed in the literature:

The Quantum Mechanics with Universal Position Localization (QMUPL) model [12] should also be mentioned; an extension of the GRW model for identical particles formulated by Tumulka, [16] which proves several important mathematical results regarding the collapse equations. [17]

In all models listed so far, the noise responsible for the collapse is Markovian (memoryless): either a Poisson process in the discrete GRW model, or a white noise in the continuous models. The models can be generalized to include arbitrary (colored) noises, possibly with a frequency cutoff: the CSL model model has been extended to its colored version [18] [19] (cCSL), as well as the QMUPL model [20] [21] (cQMUPL). In these new models the collapse properties remain basically unaltered, but specific physical predictions can change significantly.

In collapse models the energy is not conserved, because the noise responsible for the collapse induces Brownian motion on each constituent of a physical system. Accordingly, the kinetic energy increases at a faint but constant rate. Such a feature can be modified, without altering the collapse properties, by including appropriate dissipative effects in the dynamics. This is achieved for the GRW, CSL and QMUPL models, obtaining their dissipative counterparts (dGRW, [22] dCSL, [23] dQMUPL [24] ). In these new models, the energy thermalizes to a finite value.

Lastly, the QMUPL model was further generalized to include both colored noise as well as dissipative effects [25] [26] (dcQMUPL model).

Tests of collapse models

Collapse models modify the Schrödinger equation; therefore, they make predictions, which differ from standard quantum mechanical predictions. Although the deviations are difficult to detect, there is a growing number of experiments searching for spontaneous collapse effects. They can be classified in two groups:

Problems and criticisms to collapse theories

Violation of the principle of the conservation of energy . According to collapse theories, energy is not conserved, also for isolated particles. More precisely, in the GRW, CSL and DP models the kinetic energy increases at a constant rate, which is small but non-zero. This is often presented as an unavoidable consequence of Heisenberg's uncertainty principle: the collapse in position causes a larger uncertainty in momentum. This explanation is fundamentally wrong. Actually, in collapse theories the collapse in position determines also a localization in momentum: the wave function is driven to an almost minimum uncertainty state both in position as well as in momentum, [17] compatibly with Heisenberg's principle.

The reason why the energy increases according to collapse theories, is that the collapse noise diffuses the particle, thus accelerating it. This is the same situation as in classical Brownian motion. And as for classical Brownian motion, this increase can be stopped by adding dissipative effects. Dissipative versions of the QMUPL, GRW and CSL model exist, [22] [23] [24] where the collapse properties are left unaltered with respect to the original models, while the energy thermalizes to a finite value (therefore it can even decrease, depending on its initial value).

Still, also in the dissipative model the energy is not strictly conserved. A resolution to this situation might come by considering also the noise a dynamical variable with its own energy, which is exchanged with the quantum system in such a way that the total system+noise energy is conserved.

Relativistic collapse models. One of the biggest challenges in collapse theories is to make them compatible with relativistic requirements. The GRW, CSL and DP models are not. The biggest difficulty is how to combine the nonlocal character of the collapse, which is necessary in order to make it compatible with the experimentally verified violation of Bell inequalities, with the relativistic principle of locality. Models exist, [27] [28] that attempt to generalize in a relativistic sense the GRW and CSL models, but their status as relativistic theories is still unclear. The formulation of a proper Lorentz-covariant theory of continuous objective collapse is still a matter of research.

Tail problem. In all collapse theories, the wave function is never fully contained within one (small) region of space, because the Schrödinger term of the dynamics will always spread it outside. Therefore, wave functions always contain tails stretching out to infinity, although their “weight” is the smaller, the larger the system. Critics of collapse theories argue that it is not clear how to interpret these tails, since they amount to the system never being really fully localized in space. [29] [30] Supporters of collapse theories mostly dismiss this criticism as a misunderstanding of the theory, [31] [32] as in the context of dynamical collapse theories, the absolute square of the wave function is interpreted as an actual matter density. In this case, the tails merely represent an immeasurably small amount of smeared-out matter, while from a macroscopic perspective, all particles appear to be point-like for all practical purposes.

See also

Notes

  1. Bassi, Angelo; Ghirardi, GianCarlo (2003). "Dynamical reduction models". Physics Reports. 379 (5–6): 257–426. arXiv: quant-ph/0302164 . Bibcode:2003PhR...379..257B. doi:10.1016/S0370-1573(03)00103-0.
  2. Bassi, Angelo; Lochan, Kinjalk; Satin, Seema; Singh, Tejinder P.; Ulbricht, Hendrik (2013). "Models of wave-function collapse, underlying theories, and experimental tests". Reviews of Modern Physics. 85 (2): 471–527. arXiv: 1204.4325 . Bibcode:2013RvMP...85..471B. doi:10.1103/RevModPhys.85.471. ISSN   0034-6861.
  3. Bell, J. S. (2004). Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (2 ed.). Cambridge University Press. doi:10.1017/cbo9780511815676. ISBN   978-0-521-52338-7.
  4. Fonda, L.; Ghirardi, G. C.; Rimini, A.; Weber, T. (1973). "On the quantum foundations of the exponential decay law". Il Nuovo Cimento A. 15 (4): 689–704. Bibcode:1973NCimA..15..689F. doi:10.1007/BF02748082. ISSN   0369-3546.
  5. Pearle, Philip (1976). "Reduction of the state vector by a nonlinear Schr\"odinger equation". Physical Review D. 13 (4): 857–868. doi:10.1103/PhysRevD.13.857.
  6. Pearle, Philip (1979). "Toward explaining why events occur". International Journal of Theoretical Physics. 18 (7): 489–518. Bibcode:1979IJTP...18..489P. doi:10.1007/BF00670504. ISSN   0020-7748.
  7. Pearle, Philip (1984). "Experimental tests of dynamical state-vector reduction". Physical Review D. 29 (2): 235–240. Bibcode:1984PhRvD..29..235P. doi:10.1103/PhysRevD.29.235.
  8. 1 2 Ghirardi, G. C.; Rimini, A.; Weber, T. (1986). "Unified dynamics for microscopic and macroscopic systems". Physical Review D. 34 (2): 470–491. Bibcode:1986PhRvD..34..470G. doi:10.1103/PhysRevD.34.470. PMID   9957165.
  9. Pearle, Philip (1989). "Combining stochastic dynamical state-vector reduction with spontaneous localization". Physical Review A. 39 (5): 2277–2289. Bibcode:1989PhRvA..39.2277P. doi:10.1103/PhysRevA.39.2277. PMID   9901493.
  10. 1 2 Ghirardi, Gian Carlo; Pearle, Philip; Rimini, Alberto (1990). "Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles". Physical Review A. 42 (1): 78–89. Bibcode:1990PhRvA..42...78G. doi:10.1103/PhysRevA.42.78. PMID   9903779.
  11. Diósi, L. (1987). "A universal master equation for the gravitational violation of quantum mechanics". Physics Letters A. 120 (8): 377–381. Bibcode:1987PhLA..120..377D. doi:10.1016/0375-9601(87)90681-5.
  12. 1 2 3 Diósi, L. (1989). "Models for universal reduction of macroscopic quantum fluctuations". Physical Review A. 40 (3): 1165–1174. Bibcode:1989PhRvA..40.1165D. doi:10.1103/PhysRevA.40.1165. ISSN   0556-2791. PMID   9902248.
  13. 1 2 Penrose, Roger (1996). "On Gravity's role in Quantum State Reduction". General Relativity and Gravitation. 28 (5): 581–600. Bibcode:1996GReGr..28..581P. doi:10.1007/BF02105068. ISSN   0001-7701.
  14. Penrose, Roger (2014). "On the Gravitization of Quantum Mechanics 1: Quantum State Reduction". Foundations of Physics. 44 (5): 557–575. Bibcode:2014FoPh...44..557P. doi: 10.1007/s10701-013-9770-0 . ISSN   0015-9018.
  15. Gisin, N; Percival, I C (1992). "The quantum-state diffusion model applied to open systems". Journal of Physics A: Mathematical and General. 25 (21): 5677–5691. Bibcode:1992JPhA...25.5677G. doi:10.1088/0305-4470/25/21/023. ISSN   0305-4470.
  16. Tumulka, Roderich (2006). "On spontaneous wave function collapse and quantum field theory". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 462 (2070): 1897–1908. arXiv: quant-ph/0508230 . Bibcode:2006RSPSA.462.1897T. doi:10.1098/rspa.2005.1636. ISSN   1364-5021.
  17. 1 2 Bassi, Angelo (2005). "Collapse models: analysis of the free particle dynamics". Journal of Physics A: Mathematical and General. 38 (14): 3173–3192. arXiv: quant-ph/0410222 . doi:10.1088/0305-4470/38/14/008. ISSN   0305-4470.
  18. Adler, Stephen L; Bassi, Angelo (2007). "Collapse models with non-white noises". Journal of Physics A: Mathematical and Theoretical. 40 (50): 15083–15098. arXiv: 0708.3624 . Bibcode:2007JPhA...4015083A. doi:10.1088/1751-8113/40/50/012. ISSN   1751-8113.
  19. Adler, Stephen L; Bassi, Angelo (2008). "Collapse models with non-white noises: II. Particle-density coupled noises". Journal of Physics A: Mathematical and Theoretical. 41 (39): 395308. arXiv: 0807.2846 . Bibcode:2008JPhA...41M5308A. doi:10.1088/1751-8113/41/39/395308. ISSN   1751-8113.
  20. Bassi, Angelo; Ferialdi, Luca (2009). "Non-Markovian dynamics for a free quantum particle subject to spontaneous collapse in space: General solution and main properties". Physical Review A. 80 (1): 012116. arXiv: 0901.1254 . Bibcode:2009PhRvA..80a2116B. doi:10.1103/PhysRevA.80.012116. ISSN   1050-2947.
  21. Bassi, Angelo; Ferialdi, Luca (2009). "Non-Markovian Quantum Trajectories: An Exact Result". Physical Review Letters. 103 (5): 050403. arXiv: 0907.1615 . Bibcode:2009PhRvL.103e0403B. doi:10.1103/PhysRevLett.103.050403. ISSN   0031-9007. PMID   19792469.
  22. 1 2 Smirne, Andrea; Vacchini, Bassano; Bassi, Angelo (2014). "Dissipative extension of the Ghirardi-Rimini-Weber model". Physical Review A. 90 (6): 062135. arXiv: 1408.6115 . Bibcode:2014PhRvA..90f2135S. doi:10.1103/PhysRevA.90.062135. ISSN   1050-2947.
  23. 1 2 Smirne, Andrea; Bassi, Angelo (2015). "Dissipative Continuous Spontaneous Localization (CSL) model". Scientific Reports. 5 (1): 12518. arXiv: 1408.6446 . Bibcode:2015NatSR...512518S. doi:10.1038/srep12518. ISSN   2045-2322. PMC   4525142 . PMID   26243034.
  24. 1 2 Bassi, Angelo; Ippoliti, Emiliano; Vacchini, Bassano (2005). "On the energy increase in space-collapse models". Journal of Physics A: Mathematical and General. 38 (37): 8017–8038. arXiv: quant-ph/0506083 . Bibcode:2005JPhA...38.8017B. doi:10.1088/0305-4470/38/37/007. ISSN   0305-4470.
  25. Ferialdi, Luca; Bassi, Angelo (2012). "Dissipative collapse models with nonwhite noises". Physical Review A. 86 (2): 022108. arXiv: 1112.5065 . Bibcode:2012PhRvA..86b2108F. doi:10.1103/PhysRevA.86.022108. ISSN   1050-2947.
  26. Ferialdi, Luca; Bassi, Angelo (2012). "Exact Solution for a Non-Markovian Dissipative Quantum Dynamics". Physical Review Letters. 108 (17): 170404. arXiv: 1204.4348 . Bibcode:2012PhRvL.108q0404F. doi:10.1103/PhysRevLett.108.170404. ISSN   0031-9007. PMID   22680843.
  27. Ghirardi, G. C.; Grassi, R.; Pearle, P. (1990). "Relativistic dynamical reduction models: General framework and examples". Foundations of Physics. 20 (11): 1271–1316. Bibcode:1990FoPh...20.1271G. doi:10.1007/BF01883487. ISSN   0015-9018.
  28. Tumulka, Roderich (2006). "A Relativistic Version of the Ghirardi–Rimini–Weber Model". Journal of Statistical Physics. 125 (4): 821–840. arXiv: quant-ph/0406094 . Bibcode:2006JSP...125..821T. doi:10.1007/s10955-006-9227-3. ISSN   0022-4715.
  29. Lewis, Peter J. (1997). "Quantum Mechanics, Orthogonality, and Counting". The British Journal for the Philosophy of Science. 48 (3): 313–328. doi:10.1093/bjps/48.3.313. ISSN   0007-0882.
  30. Clifton, R.; Monton, B. (1999). "Discussion. Losing your marbles in wavefunction collapse theories". The British Journal for the Philosophy of Science. 50 (4): 697–717. doi:10.1093/bjps/50.4.697. ISSN   0007-0882.
  31. Ghirardi, G. C.; Bassi, A. (1999). "Do dynamical reduction models imply that arithmetic does not apply to ordinary macroscopic objects?". The British Journal for the Philosophy of Science. 50 (1): 49–64. arXiv: quant-ph/9810041 . doi:10.1093/bjps/50.1.49. ISSN   0007-0882.
  32. Bassi, A.; Ghirardi, G.-C. (1999). "Discussion. More about dynamical reduction and the enumeration principle". The British Journal for the Philosophy of Science. 50 (4): 719–734. doi:10.1093/bjps/50.4.719. ISSN   0007-0882.

Related Research Articles

Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be described as either a particle or a wave. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects. As Albert Einstein wrote:

It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do.

The quantum Zeno effect is a feature of quantum-mechanical systems allowing a particle's time evolution to be arrested by measuring it frequently enough with respect to some chosen measurement setting.

In quantum mechanics, the measurement problem considers how, or whether, wave function collapse occurs. The inability to observe such a collapse directly has given rise to different interpretations of quantum mechanics and poses a key set of questions that each interpretation must answer.

Black hole information paradox Whether information can disappear in a black hole

The black hole information paradox is a puzzle resulting from the combination of quantum mechanics and general relativity. Calculations suggest that physical information could permanently disappear in a black hole, allowing many physical states to devolve into the same state. This is controversial because it violates a core precept of modern physics—that, in principle, the value of a wave function of a physical system at one point in time should determine its value at any other time. A fundamental postulate of the Copenhagen interpretation of quantum mechanics is that complete information about a system is encoded in its wave function up to when the wave function collapses. The evolution of the wave function is determined by a unitary operator, and unitarity implies that information is conserved in the quantum sense.

The Alternative models to the Standard Higgs Model are models which are considered by many particle physicists to solve some of the Higgs boson's existing problems. Two of the most currently researched models are quantum triviality, and Higgs hierarchy problem.

Quantum metrology is the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory to describe the physical systems, particularly exploiting quantum entanglement and quantum squeezing. This field promises to develop measurement techniques that give better precision than the same measurement performed in a classical framework. Together with quantum hypothesis testing, it represents an important theoretical model at the basis of quantum sensing.

A charge density wave (CDW) is an ordered quantum fluid of electrons in a linear chain compound or layered crystal. The electrons within a CDW form a standing wave pattern and sometimes collectively carry an electric current. The electrons in such a CDW, like those in a superconductor, can flow through a linear chain compound en masse, in a highly correlated fashion. Unlike a superconductor, however, the electric CDW current often flows in a jerky fashion, much like water dripping from a faucet due to its electrostatic properties. In a CDW, the combined effects of pinning and electrostatic interactions likely play critical roles in the CDW current's jerky behavior, as discussed in sections 4 & 5 below.

Landau–Zener formula Formula for the probability that a system will change between two energy states.

The Landau–Zener formula is an analytic solution to the equations of motion governing the transition dynamics of a two-state quantum system, with a time-dependent Hamiltonian varying such that the energy separation of the two states is a linear function of time. The formula, giving the probability of a diabatic transition between the two energy states, was published separately by Lev Landau, Clarence Zener, Ernst Stueckelberg, and Ettore Majorana, in 1932.

The Ghirardi–Rimini–Weber theory (GRW) is a spontaneous collapse theory in quantum mechanics, proposed in 1986 by Giancarlo Ghirardi, Alberto Rimini, and Tullio Weber.

Light front quantization Technique in computational quantum field theory

The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others.

Subir Sachdev is Herchel Smith Professor of Physics at Harvard University specializing in condensed matter. He was elected to the U.S. National Academy of Sciences in 2014, and received the Lars Onsager Prize from the American Physical Society and the Dirac Medal from the ICTP in 2018.

The SP formula for the dephasing rate of a particle that moves in a fluctuating environment unifies various results that have been obtained, notably in condensed matter physics, with regard to the motion of electrons in a metal. The general case requires to take into account not only the temporal correlations but also the spatial correlations of the environmental fluctuations. These can be characterized by the spectral form factor , while the motion of the particle is characterized by its power spectrum . Consequently, at finite temperature the expression for the dephasing rate takes the following form that involves S and P functions:

In theoretical physics, the logarithmic Schrödinger equation is one of the nonlinear modifications of Schrödinger's equation. It is a classical wave equation with applications to extensions of quantum mechanics, quantum optics, nuclear physics, transport and diffusion phenomena, open quantum systems and information theory, effective quantum gravity and physical vacuum models and theory of superfluidity and Bose–Einstein condensation. Its relativistic version was first proposed by Gerald Rosen. It is an example of an integrable model.

A dynamical reduction theory (DRT) is an extension of quantum mechanics (QM) that attempts to account for the collapse of the wave function. It is necessary because QM does not account for the specific measurements of observable quantities or events, in the familiar realm of Newtonian or classical physics, that we make in QM experiments.

The Vicsek model is a mathematical model used to describe active matter. One motivation of the study of active matter by physicists is the rich phenomenology associated to this field. Collective motion and swarming are among the most studied phenomena. Within the huge number of models that have been developed to catch such behavior from a microscopic description, the most famous is the model introduced by Tamás Vicsek et al. in 1995.

Giancarlo Ghirardi

Giancarlo Ghirardi was an Italian physicist and emeritus professor of theoretical physics at the University of Trieste.

Light-front quantization applications

The light front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others. The basic formalism is discussed elsewhere.

Bernstein–Greene–Kruskal modes are nonlinear electrostatic waves that propagate in an unmagnetized, collisionless plasma. They are nonlinear solutions to the Vlasov–Poisson equation in plasma physics, and are named after physicists Ira B. Bernstein, John M. Greene, and Martin D. Kruskal, who solved and published the exact solution for the one-dimensional case in 1957.

The continuous spontaneous localization (CSL) model is a spontaneous collapse model in quantum mechanics, proposed in 1989 by Philip Pearle. and finalized in 1990 Gian Carlo Ghirardi, Philip Pearle and Alberto Rimini.

The Diósi–Penrose model was introduced as a possible solution to the measurement problem, where the wave function collapse is related to gravity. The model was first suggested by Lajos Diósi when studying how possible gravitational fluctuations may affect the dynamics of quantum systems. Later, following a different line of reasoning, R. Penrose arrived at an estimation for the collapse time of a superposition due to gravitational effects, which is the same as that found by Diósi, hence the name Diósi–Penrose model. However, it should be pointed out that while Diósi gave a precise dynamical equation for the collapse, Penrose took a more conservative approach, estimating only the collapse time of a superposition.