Quantum bus

Last updated

A quantum bus is a device which can be used to store or transfer information between independent qubits in a quantum computer, or combine two qubits into a superposition. It is the quantum analog of a classical bus.

Contents

There are several physical systems that can be used to realize a quantum bus, including trapped ions, photons, and superconducting qubits. Trapped ions, for example, can use the quantized motion of ions (phonons) as a quantum bus, while photons can act as a carrier of quantum information by utilizing the increased interaction strength provided by cavity quantum electrodynamics. Circuit quantum electrodynamics, which uses superconducting qubits coupled to a microwave cavity on a chip, is another example of a quantum bus that has been successfully demonstrated in experiments. [1]

History

The concept was first demonstrated by researchers at Yale University and the National Institute of Standards and Technology (NIST) in 2007. [1] [2] [3] Prior to this experimental demonstration, the quantum bus had been described by scientists at NIST as one of the possible cornerstone building blocks in quantum computing architectures. [4] [5]

Mathematical description

A quantum bus for superconducting qubits can be built with a resonance cavity. The hamiltonian for a system with qubit A, qubit B, and the resonance cavity or quantum bus connecting the two is where is the single qubit hamiltonian, is the raising or lowering operator for creating or destroying excitations in the th qubit, and is controlled by the amplitude of the D.C. and radio frequency flux bias. [6]

Related Research Articles

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

In quantum mechanics, the uncertainty principle is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physical quantities of a particle, such as position, x, and momentum, p, can be predicted from initial conditions.

<span class="mw-page-title-main">Quantum decoherence</span> Loss of quantum coherence

Quantum decoherence is the loss of quantum coherence. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. A definite phase relationship is necessary to perform quantum computing on quantum information encoded in quantum states. Coherence is preserved under the laws of quantum physics.

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. The predictions that quantum physics makes are in general probabilistic. The mathematical tools for making predictions about what measurement outcomes may occur were developed during the 20th century and make use of linear algebra and functional analysis.

<span class="mw-page-title-main">Charge qubit</span> Superconducting qubit implementation

In quantum computing, a charge qubit is a qubit whose basis states are charge states. In superconducting quantum computing, a charge qubit is formed by a tiny superconducting island coupled by a Josephson junction to a superconducting reservoir. The state of the qubit is determined by the number of Cooper pairs which have tunneled across the junction. In contrast with the charge state of an atomic or molecular ion, the charge states of such an "island" involve a macroscopic number of conduction electrons of the island. The quantum superposition of charge states can be achieved by tuning the gate voltage U that controls the chemical potential of the island. The charge qubit is typically read-out by electrostatically coupling the island to an extremely sensitive electrometer such as the radio-frequency single-electron transistor.

Superconducting quantum computing is a branch of solid state quantum computing which implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPU's utilize superconducting architecture.

<span class="mw-page-title-main">Trapped ion quantum computer</span> Proposed quantum computer implementation

A trapped ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap. Lasers are applied to induce coupling between the qubit states or coupling between the internal qubit states and the external motional states.

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

In quantum information and quantum computing, a cluster state is a type of highly entangled state of multiple qubits. Cluster states are generated in lattices of qubits with Ising type interactions. A cluster C is a connected subset of a d-dimensional lattice, and a cluster state is a pure state of the qubits located on C. They are different from other types of entangled states such as GHZ states or W states in that it is more difficult to eliminate quantum entanglement in the case of cluster states. Another way of thinking of cluster states is as a particular instance of graph states, where the underlying graph is a connected subset of a d-dimensional lattice. Cluster states are especially useful in the context of the one-way quantum computer. For a comprehensible introduction to the topic see.

Ferromagnetic superconductors are materials that display intrinsic coexistence of ferromagnetism and superconductivity. They include UGe2, URhGe, and UCoGe. Evidence of ferromagnetic superconductivity was also reported for ZrZn2 in 2001, but later reports question these findings. These materials exhibit superconductivity in proximity to a magnetic quantum critical point.

Circuit quantum electrodynamics provides a means of studying the fundamental interaction between light and matter. As in the field of cavity quantum electrodynamics, a single photon within a single mode cavity coherently couples to a quantum object (atom). In contrast to cavity QED, the photon is stored in a one-dimensional on-chip resonator and the quantum object is no natural atom but an artificial one. These artificial atoms usually are mesoscopic devices which exhibit an atom-like energy spectrum. The field of circuit QED is a prominent example for quantum information processing and a promising candidate for future quantum computation.

<span class="mw-page-title-main">Transmon</span> Superconducting qubit implementation

In quantum computing, and more specifically in superconducting quantum computing, a transmon is a type of superconducting charge qubit that was designed to have reduced sensitivity to charge noise. The transmon was developed by Robert J. Schoelkopf, Michel Devoret, Steven M. Girvin, and their colleagues at Yale University in 2007. Its name is an abbreviation of the term transmission line shunted plasma oscillation qubit; one which consists of a Cooper-pair box "where the two superconductors are also capacitatively shunted in order to decrease the sensitivity to charge noise, while maintaining a sufficient anharmonicity for selective qubit control".

<span class="mw-page-title-main">Jaynes–Cummings–Hubbard model</span> Model in quantum optics

The Jaynes–Cummings–Hubbard (JCH) model is a many-body quantum system modeling the quantum phase transition of light. As the name suggests, the Jaynes–Cummings–Hubbard model is a variant on the Jaynes–Cummings model; a one-dimensional JCH model consists of a chain of N coupled single-mode cavities, each with a two-level atom. Unlike in the competing Bose–Hubbard model, Jaynes–Cummings–Hubbard dynamics depend on photonic and atomic degrees of freedom and hence require strong-coupling theory for treatment. One method for realizing an experimental model of the system uses circularly-linked superconducting qubits.

<span class="mw-page-title-main">Superradiant phase transition</span> Process in quantum optics

In quantum optics, a superradiant phase transition is a phase transition that occurs in a collection of fluorescent emitters, between a state containing few electromagnetic excitations and a superradiant state with many electromagnetic excitations trapped inside the emitters. The superradiant state is made thermodynamically favorable by having strong, coherent interactions between the emitters.

<span class="mw-page-title-main">Coplanar waveguide</span> Type of planar transmission line

Coplanar waveguide is a type of electrical planar transmission line which can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. On a smaller scale, coplanar waveguide transmission lines are also built into monolithic microwave integrated circuits.

Linear optical quantum computing or linear optics quantum computation (LOQC) is a paradigm of quantum computation, allowing universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

<span class="mw-page-title-main">Mølmer–Sørensen gate</span> Trapped-ion quantum gate

In quantum computing, Mølmer–Sørensen gate scheme refers to an implementation procedure for various multi-qubit quantum logic gates used mostly in trapped ion quantum computing. This procedure is based on the original proposition by Klaus Mølmer and Anders Sørensen in 1999-2000.

The term Dirac matter refers to a class of condensed matter systems which can be effectively described by the Dirac equation. Even though the Dirac equation itself was formulated for fermions, the quasi-particles present within Dirac matter can be of any statistics. As a consequence, Dirac matter can be distinguished in fermionic, bosonic or anyonic Dirac matter. Prominent examples of Dirac matter are Graphene, topological insulators, Dirac semimetals, Weyl semimetals, various high-temperature superconductors with -wave pairing and liquid Helium-3. The effective theory of such systems is classified by a specific choice of the Dirac mass, the Dirac velocity, the Dirac matrices and the space-time curvature. The universal treatment of the class of Dirac matter in terms of an effective theory leads to a common features with respect to the density of states, the heat capacity and impurity scattering.

The Dicke model is a fundamental model of quantum optics, which describes the interaction between light and matter. In the Dicke model, the light component is described as a single quantum mode, while the matter is described as a set of two-level systems. When the coupling between the light and matter crosses a critical value, the Dicke model shows a mean-field phase transition to a superradiant phase. This transition belongs to the Ising universality class and was realized in cavity quantum electrodynamics experiments. Although the superradiant transition bears some analogy with the lasing instability, these two transitions belong to different universality classes.

References

  1. 1 2 J. Majer; J. M. Chow; J. M. Gambetta; Jens Koch; B. R. Johnson; J. A. Schreier; L. Frunzio; D. I. Schuster; A. A. Houck; A. Wallraff; A. Blais; M. H. Devoret; S. M. Girvin; R. J. Schoelkopf (2007-09-27). "Coupling superconducting qubits via a cavity bus". Nature. 449 (7161): 443–447. arXiv: 0709.2135 . Bibcode:2007Natur.449..443M. doi:10.1038/nature06184. PMID   17898763. S2CID   8467224.
  2. M. A. Sillanpää; J. I. Park; R. W. Simmonds (2007-09-27). "Coherent quantum state storage and transfer between two phase qubits via a resonant cavity". Nature. 449 (7161): 438–42. arXiv: 0709.2341 . Bibcode:2007Natur.449..438S. doi:10.1038/nature06124. PMID   17898762. S2CID   4357331.
  3. "All Aboard the Quantum 'Bus'". 2007-09-27. Retrieved 2008-12-12.
  4. G.K. Brennen; D. Song; C.J. Williams (2003). "Quantum-computer architecture using nonlocal interactions". Physical Review A. 67 (5): 050302. arXiv: quant-ph/0301012 . Bibcode:2003PhRvA..67e0302B. doi:10.1103/PhysRevA.67.050302. S2CID   118895065.
  5. Brooks, Michael (2012-12-06). Quantum Computing and Communications. Springer Science & Business Media. ISBN   978-1-4471-0839-9.
  6. Sillanpää, Mika A.; Park, Jae I.; Simmonds, Raymond W. (2007). "Coherent quantum state storage and transfer between two phase qubits via a resonant cavity". Nature. 449 (7161): 438–442. arXiv: 0709.2341 . Bibcode:2007Natur.449..438S. doi:10.1038/nature06124. PMID   17898762. S2CID   4357331.