Quantum error correction

Last updated

Quantum error correction (QEC) is a set of techniques used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum state preparation, and faulty measurements. Effective quantum error correction would allow quantum computers with low qubit fidelity to execute algorithms of higher complexity or greater circuit depth. [1]

Contents

Classical error correction often employs redundancy. The simplest albeit inefficient approach is the repetition code. A repetition code stores the desired (logical) information as multiple copies, and—if these copies are later found to disagree due to errors introduced to the system-determines the most likely value for the original data by majority vote. E.g. suppose we copy a bit in the one (on) state three times. Suppose further that noise in the system introduces an error which corrupts the three-bit state so that one of the copied bits becomes zero (off) but the other two remain equal to one. Assuming that errors are independent and occur with some sufficiently low probability p, it is most likely that the error is a single-bit error and the intended message is three bits in the one state. It is possible that a double-bit error occurs and the transmitted message is equal to three zeros, but this outcome is less likely than the above outcome. In this example, the logical information is a single bit in the one state and the physical information are the three duplicate bits. Creating a physical state that represents the logical state is called encoding and determining which logical state is encoded in the physical state is called decoding. Similar to classical error correction, QEC codes do not always correctly decode logical qubits, but instead reduce the effect of noise on the logical state.

Copying quantum information is not possible due to the no-cloning theorem. This theorem seems to present an obstacle to formulating a theory of quantum error correction. But it is possible to spread the (logical) information of one logical qubit onto a highly entangled state of several (physical) qubits. Peter Shor first discovered this method of formulating a quantum error correcting code by storing the information of one qubit onto a highly entangled state of nine qubits. [2]

In classical error correction, syndrome decoding is used to diagnose which error was the likely source of corruption on an encoded state. An error can then be reversed by applying a corrective operation based on the syndrome. Quantum error correction also employs syndrome measurements. It performs a multi-qubit measurement that does not disturb the quantum information in the encoded state but retrieves information about the error. Depending on the QEC code used, syndrome measurement can determine the occurrence, location and type of errors. In most QEC codes, the type of error is either a bit flip, or a sign (of the phase) flip, or both (corresponding to the Pauli matrices X, Z, and Y). The measurement of the syndrome has the projective effect of a quantum measurement, so even if the error due to the noise was arbitrary, it can be expressed as a combination of basis operations called the error basis (which is given by the Pauli matrices and the identity). To correct the error, the Pauli operator corresponding to the type of error is used on the corrupted qubit to revert the effect of the error.

The syndrome measurement provides information about the error that has happened, but not about the information that is stored in the logical qubit—as otherwise the measurement would destroy any quantum superposition of this logical qubit with other qubits in the quantum computer, which would prevent it from being used to convey quantum information.

Bit flip code

The repetition code works in a classical channel, because classical bits are easy to measure and to repeat. This approach does not work for a quantum channel in which, due to the no-cloning theorem, it is not possible to repeat a single qubit three times. To overcome this, a different method has to be used, such as the three-qubit bit flip code first proposed by Asher Peres in 1985. [3] This technique uses entanglement and syndrome measurements and is comparable in performance with the repetition code.

Quantum circuit of the bit flip code Quantum error correction of bit flip using three qubits.svg
Quantum circuit of the bit flip code

Consider the situation in which we want to transmit the state of a single qubit through a noisy channel . Let us moreover assume that this channel either flips the state of the qubit, with probability , or leaves it unchanged. The action of on a general input can therefore be written as .

Let be the quantum state to be transmitted. With no error correcting protocol in place, the transmitted state will be correctly transmitted with probability . We can however improve on this number by encoding the state into a greater number of qubits, in such a way that errors in the corresponding logical qubits can be detected and corrected. In the case of the simple three-qubit repetition code, the encoding consists in the mappings and . The input state is encoded into the state . This mapping can be realized for example using two CNOT gates, entangling the system with two ancillary qubits initialized in the state . [4] The encoded state is what is now passed through the noisy channel.

The channel acts on by flipping some subset (possibly empty) of its qubits. No qubit is flipped with probability , a single qubit is flipped with probability , two qubits are flipped with probability , and all three qubits are flipped with probability . Note that a further assumption about the channel is made here: we assume that acts equally and independently on each of the three qubits in which the state is now encoded. The problem is now how to detect and correct such errors, while not corrupting the transmitted state.

Comparison of output minimum fidelities, with (red) and without (blue) error correcting via the three qubit bit flip code. Notice how, for
p
<=
1
/
2
{\displaystyle p\leq 1/2}
, the error correction scheme improves the fidelity. Fidelity Error Correction Bit Flips.svg
Comparison of output minimum fidelities, with (red) and without (blue) error correcting via the three qubit bit flip code. Notice how, for , the error correction scheme improves the fidelity.

Let us assume for simplicity that is small enough that the probability of more than a single qubit being flipped is negligible. One can then detect whether a qubit was flipped, without also querying for the values being transmitted, by asking whether one of the qubits differs from the others. This amounts to performing a measurement with four different outcomes, corresponding to the following four projective measurements:This reveals which qubits are different from the others, without at the same time giving information about the state of the qubits themselves. If the outcome corresponding to is obtained, no correction is applied, while if the outcome corresponding to is observed, then the Pauli X gate is applied to the -th qubit. Formally, this correcting procedure corresponds to the application of the following map to the output of the channel:

Note that, while this procedure perfectly corrects the output when zero or one flips are introduced by the channel, if more than one qubit is flipped then the output is not properly corrected. For example, if the first and second qubits are flipped, then the syndrome measurement gives the outcome , and the third qubit is flipped, instead of the first two. To assess the performance of this error-correcting scheme for a general input we can study the fidelity between the input and the output . Being the output state correct when no more than one qubit is flipped, which happens with probability , we can write it as , where the dots denote components of resulting from errors not properly corrected by the protocol. It follows that This fidelity is to be compared with the corresponding fidelity obtained when no error-correcting protocol is used, which was shown before to equal . A little algebra then shows that the fidelity after error correction is greater than the one without for . Note that this is consistent with the working assumption that was made while deriving the protocol (of being small enough).

Sign flip code

Quantum circuit of the phase flip code Quantum error correction of phase flip using three qubits.svg
Quantum circuit of the phase flip code

Flipped bits are the only kind of error in classical computer, but there is another possibility of an error with quantum computers, the sign flip. Through the transmission in a channel the relative sign between and can become inverted. For instance, a qubit in the state may have its sign flip to

The original state of the qubit will be changed into the state

In the Hadamard basis, bit flips become sign flips and sign flips become bit flips. Let be a quantum channel that can cause at most one phase flip. Then the bit flip code from above can recover by transforming into the Hadamard basis before and after transmission through .

Shor code

The error channel may induce either a bit flip, a sign flip (i.e., a phase flip), or both. It is possible to correct for both types of errors on a logical qubit using a well-designed QEC code. One example of a code that does this is the Shor code, published in 1995. [2] [5] :10 Since these two types of errors are the only types of errors that can result after a projective measurement, a Shor code corrects arbitrary single-qubit errors.

Quantum circuit to encode a single logical qubit with the Shor code and then perform bit flip error correction on each of the three blocks. Shore code.svg
Quantum circuit to encode a single logical qubit with the Shor code and then perform bit flip error correction on each of the three blocks.

Let be a quantum channel that can arbitrarily corrupt a single qubit. The 1st, 4th and 7th qubits are for the sign flip code, while the three groups of qubits (1,2,3), (4,5,6), and (7,8,9) are designed for the bit flip code. With the Shor code, a qubit state will be transformed into the product of 9 qubits , where

If a bit flip error happens to a qubit, the syndrome analysis will be performed on each block of qubits (1,2,3), (4,5,6), and (7,8,9) to detect and correct at most one bit flip error in each block.

If the three bit flip group (1,2,3), (4,5,6), and (7,8,9) are considered as three inputs, then the Shor code circuit can be reduced as a sign flip code. This means that the Shor code can also repair a sign flip error for a single qubit.

The Shor code also can correct for any arbitrary errors (both bit flip and sign flip) to a single qubit. If an error is modeled by a unitary transform U, which will act on a qubit , then can be described in the form where ,,, and are complex constants, I is the identity, and the Pauli matrices are given by

If U is equal to I, then no error occurs. If , a bit flip error occurs. If , a sign flip error occurs. If then both a bit flip error and a sign flip error occur. In other words, the Shor code can correct any combination of bit or phase errors on a single qubit.

Bosonic codes

Several proposals have been made for storing error-correctable quantum information in bosonic modes.[ clarification needed ] Unlike a two-level system, a quantum harmonic oscillator has infinitely many energy levels in a single physical system. Codes for these systems include cat, [6] [7] [8] Gottesman-Kitaev-Preskill (GKP), [9] and binomial codes. [10] [11] One insight offered by these codes is to take advantage of the redundancy within a single system, rather than to duplicate many two-level qubits.

Binomial code [10]

Written in the Fock basis, the simplest binomial encoding is where the subscript L indicates a "logically encoded" state. Then if the dominant error mechanism of the system is the stochastic application of the bosonic lowering operator the corresponding error states are and respectively. Since the codewords involve only even photon number, and the error states involve only odd photon number, errors can be detected by measuring the photon number parity of the system. [10] [12] Measuring the odd parity will allow correction by application of an appropriate unitary operation without knowledge of the specific logical state of the qubit. However, the particular binomial code above is not robust to two-photon loss.

Cat code [6] [7] [8]

Schrödinger cat states, superpositions of coherent states, can also be used as logical states for error correction codes. Cat code, realized by Ofek et al. [13] in 2016, defined two sets of logical states: and , where each of the states is a superposition of coherent state as follows

Those two sets of states differ from the photon number parity, as states denoted with only occupy even photon number states and states with indicate they have odd parity. Similar to the binomial code, if the dominant error mechanism of the system is the stochastic application of the bosonic lowering operator , the error takes the logical states from the even parity subspace to the odd one, and vice versa. Single-photon-loss errors can therefore be detected by measuring the photon number parity operator using a dispersively coupled ancillary qubit. [12]

Still, cat qubits are not protected against two-photon loss , dephasing noise , photon-gain error , etc.

General codes

In general, a quantum code for a quantum channel is a subspace , where is the state Hilbert space, such that there exists another quantum channel with where is the orthogonal projection onto . Here is known as the correction operation.

A non-degenerate code is one for which different elements of the set of correctable errors produce linearly independent results when applied to elements of the code. If distinct of the set of correctable errors produce orthogonal results, the code is considered pure. [14]

Models

Over time, researchers have come up with several codes:

That these codes allow indeed for quantum computations of arbitrary length is the content of the quantum threshold theorem, found by Michael Ben-Or and Dorit Aharonov, which asserts that you can correct for all errors if you concatenate quantum codes such as the CSS codes—i.e. re-encode each logical qubit by the same code again, and so on, on logarithmically many levels—provided that the error rate of individual quantum gates is below a certain threshold; as otherwise, the attempts to measure the syndrome and correct the errors would introduce more new errors than they correct for.

As of late 2004, estimates for this threshold indicate that it could be as high as 1–3%, [20] provided that there are sufficiently many qubits available.

Experimental realization

There have been several experimental realizations of CSS-based codes. The first demonstration was with nuclear magnetic resonance qubits. [21] Subsequently, demonstrations have been made with linear optics, [22] trapped ions, [23] [24] and superconducting (transmon) qubits. [25]

In 2016 for the first time the lifetime of a quantum bit was prolonged by employing a QEC code. [13] The error-correction demonstration was performed on Schrodinger-cat states encoded in a superconducting resonator, and employed a quantum controller capable of performing real-time feedback operations including read-out of the quantum information, its analysis, and the correction of its detected errors. The work demonstrated how the quantum-error-corrected system reaches the break-even point at which the lifetime of a logical qubit exceeds the lifetime of the underlying constituents of the system (the physical qubits).

Other error correcting codes have also been implemented, such as one aimed at correcting for photon loss, the dominant error source in photonic qubit schemes. [26] [27]

In 2021, an entangling gate between two logical qubits encoded in topological quantum error-correction codes has first been realized using 10 ions in a trapped-ion quantum computer. [28] [29] 2021 also saw the first experimental demonstration of fault-tolerant Bacon-Shor code in a single logical qubit of a trapped-ion system, i.e. a demonstration for which the addition of error correction is able to suppress more errors than is introduced by the overhead required to implement the error correction as well as fault tolerant Steane code. [30] [31] [32]

In 2022, researchers at the University of Innsbruck have demonstrated a fault-tolerant universal set of gates on two logical qubits in a trapped-ion quantum computer. They have performed a logical two-qubit controlled-NOT gate between two instances of the seven-qubit colour code, and fault-tolerantly prepared a logical magic state. [33]

In February 2023 researchers at Google claimed to have decreased quantum errors by increasing the qubit number in experiments, they used a fault tolerant surface code measuring an error rate of 3.028% and 2.914% for a distance-3 qubit array and a distance-5 qubit array respectively. [34] [35] [36]

In April 2024, researchers at Microsoft claimed to have successfully tested a quantum error correction code that allowed them to achieve an error rate with logical qubits that is 800 times better than the underlying physical error rate. [37]

This qubit virtualization system was used to create 4 logical qubits with 30 of the 32 qubits on Quantinuum’s trapped-ion hardware. The system uses an active syndrome extraction technique to diagnose errors and correct them while calculations are underway without destroying the logical qubits. [38]

Quantum error-correction without encoding and parity-checks

In 2022, research at University of Engineering and Technology Lahore demonstrated error-cancellation by inserting single-qubit Z-axis rotation gates into strategically chosen locations of the superconductor quantum circuits. [39] The scheme has been shown to effectively correct errors that would otherwise rapidly add up under constructive interference of coherent noise. This is a circuit-level calibration scheme that traces deviations (e.g. sharp dips or notches) in the decoherence curve to detect and localize the coherent error, but does not require encoding or parity measurements. [40] However, further investigation is needed to establish the effectiveness of this method for the incoherent noise. [39]

See also

Related Research Articles

In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theorem is an evolution of the 1970 no-go theorem authored by James Park, in which he demonstrates that a non-disturbing measurement scheme which is both simple and perfect cannot exist. The aforementioned theorems do not preclude the state of one system becoming entangled with the state of another as cloning specifically refers to the creation of a separable state with identical factors. For example, one might use the controlled NOT gate and the Walsh–Hadamard gate to entangle two qubits without violating the no-cloning theorem as no well-defined state may be defined in terms of a subsystem of an entangled state. The no-cloning theorem concerns only pure states whereas the generalized statement regarding mixed states is known as the no-broadcast theorem.

<span class="mw-page-title-main">Quantum teleportation</span> Physical phenomenon

Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.

In quantum mechanics, a density matrix is a matrix that describes an ensemble of physical systems as quantum states. It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles. Mixed ensembles arise in quantum mechanics in two different situations:

  1. when the preparation of the systems lead to numerous pure states in the ensemble, and thus one must deal with the statistics of possible preparations, and
  2. when one wants to describe a physical system that is entangled with another, without describing their combined state; this case is typical for a system interacting with some environment. In this case, the density matrix of an entangled system differs from that of an ensemble of pure states that, combined, would give the same statistical results upon measurement.

In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint—on the statistical occurrence of "coincidences" in a Bell test—which is necessarily true if an underlying local hidden-variable theory exists. In practice, the inequality is routinely violated by modern experiments in quantum mechanics.

<span class="mw-page-title-main">Quantum decoherence</span> Loss of quantum coherence

Quantum decoherence is the loss of quantum coherence. Quantum decoherence has been studied to understand how quantum systems convert to systems which can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have confirmed some of the key issues. Quantum computing relies on quantum coherence and is one of the primary practical applications of the concept.

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.

<span class="mw-page-title-main">LOCC</span> Method in quantum computation and communication

LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed conditioned on the information received.

The Steane code is a tool in quantum error correction introduced by Andrew Steane in 1996. It is a CSS code (Calderbank-Shor-Steane), using the classical binary [7,4,3] Hamming code to correct for both qubit flip errors and phase flip errors. The Steane code encodes one logical qubit in 7 physical qubits and is able to correct arbitrary single qubit errors.

BB84 is a quantum key distribution scheme developed by Charles Bennett and Gilles Brassard in 1984. It is the first quantum cryptography protocol. The protocol is provably secure assuming a perfect implementation, relying on two conditions: (1) the quantum property that information gain is only possible at the expense of disturbing the signal if the two states one is trying to distinguish are not orthogonal ; and (2) the existence of an authenticated public classical channel. It is usually explained as a method of securely communicating a private key from one party to another for use in one-time pad encryption. The proof of BB84 depends on a perfect implementation. Side channel attacks exist, taking advantage of non-quantum sources of information. Since this information is non-quantum, it can be intercepted without measuring or cloning quantum particles.

<span class="mw-page-title-main">One-way quantum computer</span> Method of quantum computing

The one-way or measurement-based quantum computer (MBQC) is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.

A decoherence-free subspace (DFS) is a subspace of a quantum system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary. DFSs can also be characterized as a special class of quantum error correcting codes. In this representation they are passive error-preventing codes since these subspaces are encoded with information that (possibly) won't require any active stabilization methods. These subspaces prevent destructive environmental interactions by isolating quantum information. As such, they are an important subject in quantum computing, where (coherent) control of quantum systems is the desired goal. Decoherence creates problems in this regard by causing loss of coherence between the quantum states of a system and therefore the decay of their interference terms, thus leading to loss of information from the (open) quantum system to the surrounding environment. Since quantum computers cannot be isolated from their environment and information can be lost, the study of DFSs is important for the implementation of quantum computers into the real world.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order (first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev.

In quantum information theory and operator theory, the Choi–Jamiołkowski isomorphism refers to the correspondence between quantum channels and quantum states, this is introduced by Man-Duen Choi and Andrzej Jamiołkowski. It is also called channel-state duality by some authors in the quantum information area, but mathematically, this is a more general correspondence between positive operators and the complete positive superoperators.

The One Clean Qubit model of computation is performed an qubit system with one pure state and maximally mixed states. This model was motivated by highly mixed states that are prevalent in Nuclear magnetic resonance quantum computers. It's described by the density matrix , where I is the identity matrix. In computational complexity theory, DQC1; also known as the Deterministic quantum computation with one clean qubit is the class of decision problems solvable by a one clean qubit machine in polynomial time, upon measuring the first qubit, with an error probability of at most 1/poly(n) for all instances.

In quantum physics, the "monogamy" of quantum entanglement refers to the fundamental property that it cannot be freely shared between arbitrarily many parties.

Parity measurement is a procedure in quantum information science used for error detection in quantum qubits. A parity measurement checks the equality of two qubits to return a true or false answer, which can be used to determine whether a correction needs to occur. Additional measurements can be made for a system greater than two qubits. Because parity measurement does not measure the state of singular bits but rather gets information about the whole state, it is considered an example of a joint measurement. Joint measurements do not have the consequence of destroying the original state of a qubit as normal quantum measurements do. Mathematically speaking, parity measurements are used to project a state into an eigenstate of an operator and to acquire its eigenvalue.

The five-qubit error correcting code is the smallest quantum error correcting code that can protect a logical qubit from any arbitrary single qubit error. In this code, 5 physical qubits are used to encode the logical qubit. With and being Pauli matrices and the Identity matrix, this code's generators are . Its logical operators are and . Once the logical qubit is encoded, errors on the physical qubits can be detected via stabilizer measurements. A lookup table that maps the results of the stabilizer measurements to the types and locations of the errors gives the control system of the quantum computer enough information to correct errors.

This glossary of quantum computing is a list of definitions of terms and concepts used in quantum computing, its sub-disciplines, and related fields.

<span class="mw-page-title-main">Phase kickback</span>

In quantum computing, phase kickback refers to the fact that controlled operations have effects on their controls, in addition to on their targets, and that these effects correspond to phasing operations. The phase of one qubit is effectively transferred to another qubit during a controlled operation, creating entanglement and computational advantages that enable various popular quantum algorithms and protocols.

References

  1. Cai, Weizhou; Ma, Yuwei (2021). "Bosonic quantum error correction codes in superconducting quantum circuits". Fundamental Research. 1 (1): 50–67. arXiv: 2010.08699 . Bibcode:2021FunRe...1...50C. doi: 10.1016/j.fmre.2020.12.006 . A practical quantum computer that is capable of large circuit depth, therefore, ultimately calls for operations on logical qubits protected by quantum error correction
  2. 1 2 Shor, Peter W. (1995). "Scheme for reducing decoherence in quantum computer memory". Physical Review A. 52 (4): R2493–R2496. Bibcode:1995PhRvA..52.2493S. doi:10.1103/PhysRevA.52.R2493. PMID   9912632.
  3. Peres, Asher (1985). "Reversible Logic and Quantum Computers". Physical Review A. 32 (6): 3266–3276. Bibcode:1985PhRvA..32.3266P. doi:10.1103/PhysRevA.32.3266. PMID   9896493.
  4. Nielsen, Michael A.; Chuang, Isaac L. (2000). Quantum Computation and Quantum Information. Cambridge University Press.
  5. Devitt, Simon J; Munro, William J; Nemoto, Kae (2013-06-20). "Quantum error correction for beginners". Reports on Progress in Physics. 76 (7): 076001. arXiv: 0905.2794 . Bibcode:2013RPPh...76g6001D. doi:10.1088/0034-4885/76/7/076001. ISSN   0034-4885. PMID   23787909. S2CID   206021660.
  6. 1 2 Cochrane, P. T.; Milburn, G. J.; Munro, W. J. (1999-04-01). "Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping". Physical Review A. 59 (4): 2631–2634. arXiv: quant-ph/9809037 . Bibcode:1999PhRvA..59.2631C. doi:10.1103/PhysRevA.59.2631. S2CID   119532538.
  7. 1 2 Leghtas, Zaki; Kirchmair, Gerhard; Vlastakis, Brian; Schoelkopf, Robert J.; Devoret, Michel H.; Mirrahimi, Mazyar (2013-09-20). "Hardware-Efficient Autonomous Quantum Memory Protection". Physical Review Letters. 111 (12): 120501. arXiv: 1207.0679 . Bibcode:2013PhRvL.111l0501L. doi:10.1103/physrevlett.111.120501. ISSN   0031-9007. PMID   24093235. S2CID   19929020.
  8. 1 2 Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V; Touzard, Steven; Schoelkopf, Robert J; Jiang, Liang; Devoret, Michel H (2014-04-22). "Dynamically protected cat-qubits: a new paradigm for universal quantum computation". New Journal of Physics. 16 (4): 045014. arXiv: 1312.2017 . Bibcode:2014NJPh...16d5014M. doi:10.1088/1367-2630/16/4/045014. ISSN   1367-2630. S2CID   7179816.
  9. Daniel Gottesman; Alexei Kitaev; John Preskill (2001). "Encoding a qubit in an oscillator". Physical Review A. 64 (1): 012310. arXiv: quant-ph/0008040 . Bibcode:2001PhRvA..64a2310G. doi:10.1103/PhysRevA.64.012310. S2CID   18995200.
  10. 1 2 3 Michael, Marios H.; Silveri, Matti; Brierley, R. T.; Albert, Victor V.; Salmilehto, Juha; Jiang, Liang; Girvin, S. M. (2016-07-14). "New Class of Quantum Error-Correcting Codes for a Bosonic Mode". Physical Review X. 6 (3): 031006. arXiv: 1602.00008 . Bibcode:2016PhRvX...6c1006M. doi:10.1103/PhysRevX.6.031006. S2CID   29518512.
  11. Albert, Victor V.; Noh, Kyungjoo; Duivenvoorden, Kasper; Young, Dylan J.; Brierley, R. T.; Reinhold, Philip; Vuillot, Christophe; Li, Linshu; Shen, Chao; Girvin, S. M.; Terhal, Barbara M.; Jiang, Liang (2018). "Performance and structure of single-mode bosonic codes". Physical Review A. 97 (3): 032346. arXiv: 1708.05010 . Bibcode:2018PhRvA..97c2346A. doi:10.1103/PhysRevA.97.032346. S2CID   51691343.
  12. 1 2 Sun, L.; Petrenko, A.; Leghtas, Z.; Vlastakis, B.; Kirchmair, G.; Sliwa, K. M.; Narla, A.; Hatridge, M.; Shankar, S.; Blumoff, J.; Frunzio, L.; Mirrahimi, M.; Devoret, M. H.; Schoelkopf, R. J. (July 2014). "Tracking photon jumps with repeated quantum non-demolition parity measurements". Nature. 511 (7510): 444–448. arXiv: 1311.2534 . Bibcode:2014Natur.511..444S. doi:10.1038/nature13436. ISSN   1476-4687. PMID   25043007. S2CID   987945.
  13. 1 2 Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S. M.; Jiang, L.; Mirrahimi, Mazyar (August 2016). "Extending the lifetime of a quantum bit with error correction in superconducting circuits". Nature. 536 (7617): 441–445. Bibcode:2016Natur.536..441O. doi:10.1038/nature18949. ISSN   0028-0836. PMID   27437573. S2CID   594116.
  14. Calderbank, A. R.; Rains, E. M.; Shor, P. W.; Sloane, N. J. A. (1998). "Quantum Error Correction via Codes over GF(4)". IEEE Transactions on Information Theory. 44 (4): 1369–1387. arXiv: quant-ph/9608006 . doi:10.1109/18.681315. S2CID   1215697.
  15. Bacon, Dave (2006-01-30). "Operator quantum error-correcting subsystems for self-correcting quantum memories". Physical Review A. 73 (1): 012340. arXiv: quant-ph/0506023 . Bibcode:2006PhRvA..73a2340B. doi:10.1103/PhysRevA.73.012340. S2CID   118968017.
  16. Kitaev, Alexei (1997-07-31). "Quantum Error Correction with Imperfect Gates". Quantum Communication, Computing, and Measurement. Springer. pp. 181–188. doi:10.1007/978-1-4615-5923-8.
  17. Fowler, Austin G.; Mariantoni, Matteo; Martinis, John M.; Cleland, Andrew N. (2012-09-18). "Surface codes: Towards practical large-scale quantum computation". Physical Review A. 86 (3): 032324. arXiv: 1208.0928 . Bibcode:2012PhRvA..86c2324F. doi:10.1103/PhysRevA.86.032324. ISSN   1050-2947.
  18. Gidney, Craig; Newman, Michael; Brooks, Peter; Jones, Cody (2023). "Yoked surface codes". arXiv: 2312.04522 [quant-ph].
  19. Horsman, Dominic; Fowler, Austin G; Devitt, Simon; Meter, Rodney Van (2012-12-01). "Surface code quantum computing by lattice surgery". New Journal of Physics. 14 (12): 123011. arXiv: 1111.4022 . Bibcode:2012NJPh...14l3011H. doi:10.1088/1367-2630/14/12/123011. ISSN   1367-2630.
  20. Knill, Emanuel (2004-11-02). "Quantum Computing with Very Noisy Devices". Nature. 434 (7029): 39–44. arXiv: quant-ph/0410199 . Bibcode:2005Natur.434...39K. doi:10.1038/nature03350. PMID   15744292. S2CID   4420858.
  21. Cory, D. G.; Price, M. D.; Maas, W.; Knill, E.; Laflamme, R.; Zurek, W. H.; Havel, T. F.; Somaroo, S. S. (1998). "Experimental Quantum Error Correction". Phys. Rev. Lett. 81 (10): 2152–2155. arXiv: quant-ph/9802018 . Bibcode:1998PhRvL..81.2152C. doi:10.1103/PhysRevLett.81.2152. S2CID   11662810.
  22. Pittman, T. B.; Jacobs, B. C.; Franson, J. D. (2005). "Demonstration of quantum error correction using linear optics". Phys. Rev. A. 71 (5): 052332. arXiv: quant-ph/0502042 . Bibcode:2005PhRvA..71e2332P. doi:10.1103/PhysRevA.71.052332. S2CID   11679660.
  23. Chiaverini, J.; Leibfried, D.; Schaetz, T.; Barrett, M. D.; Blakestad, R. B.; Britton, J.; Itano, W. M.; Jost, J. D.; Knill, E.; Langer, C.; Ozeri, R.; Wineland, D. J. (2004). "Realization of quantum error correction". Nature. 432 (7017): 602–605. Bibcode:2004Natur.432..602C. doi:10.1038/nature03074. PMID   15577904. S2CID   167898.
  24. Schindler, P.; Barreiro, J. T.; Monz, T.; Nebendahl, V.; Nigg, D.; Chwalla, M.; Hennrich, M.; Blatt, R. (2011). "Experimental Repetitive Quantum Error Correction". Science. 332 (6033): 1059–1061. Bibcode:2011Sci...332.1059S. doi:10.1126/science.1203329. PMID   21617070. S2CID   32268350.
  25. Reed, M. D.; DiCarlo, L.; Nigg, S. E.; Sun, L.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J. (2012). "Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits". Nature. 482 (7385): 382–385. arXiv: 1109.4948 . Bibcode:2012Natur.482..382R. doi:10.1038/nature10786. PMID   22297844. S2CID   2610639.
  26. Lassen, M.; Sabuncu, M.; Huck, A.; Niset, J.; Leuchs, G.; Cerf, N. J.; Andersen, U. L. (2010). "Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure-correcting code". Nature Photonics. 4 (10): 700. arXiv: 1006.3941 . Bibcode:2010NaPho...4..700L. doi:10.1038/nphoton.2010.168. S2CID   55090423.
  27. Guo, Qihao; Zhao, Yuan-Yuan; Grassl, Markus; Nie, Xinfang; Xiang, Guo-Yong; Xin, Tao; Yin, Zhang-Qi; Zeng, Bei (2021). "Testing a quantum error-correcting code on various platforms". Science Bulletin. 66 (1): 29–35. arXiv: 2001.07998 . Bibcode:2021SciBu..66...29G. doi:10.1016/j.scib.2020.07.033. PMID   36654309. S2CID   210861230.
  28. "Error-protected quantum bits entangled for the first time". phys.org. 2021-01-13. Retrieved 2021-08-30.
  29. Erhard, Alexander; Poulsen Nautrup, Hendrik; Meth, Michael; Postler, Lukas; Stricker, Roman; Stadler, Martin; Negnevitsky, Vlad; Ringbauer, Martin; Schindler, Philipp; Briegel, Hans J.; Blatt, Rainer; Friis, Nicolai; Monz, Thomas (2021-01-13). "Entangling logical qubits with lattice surgery". Nature. 589 (7841): 220–224. arXiv: 2006.03071 . Bibcode:2021Natur.589..220E. doi:10.1038/s41586-020-03079-6. ISSN   1476-4687. PMID   33442044. S2CID   219401398.
  30. Bedford, Bailey (2021-10-04). "Foundational step shows quantum computers can be better than the sum of their parts". phys.org. Retrieved 2021-10-05.
  31. Egan, Laird; Debroy, Dripto M.; Noel, Crystal; Risinger, Andrew; Zhu, Daiwei; Biswas, Debopriyo; Newman, Michael; Li, Muyuan; Brown, Kenneth R.; Cetina, Marko; Monroe, Christopher (2021-10-04). "Fault-tolerant control of an error-corrected qubit". Nature. 598 (7880): 281–286. Bibcode:2021Natur.598..281E. doi:10.1038/s41586-021-03928-y. ISSN   0028-0836. PMID   34608286. S2CID   238357892.
  32. Ball, Philip (2021-12-23). "Real-Time Error Correction for Quantum Computing". Physics. 14. 184. Bibcode:2021PhyOJ..14..184B. doi: 10.1103/Physics.14.184 . S2CID   245442996.
  33. Postler, Lukas; Heußen, Sascha; Pogorelov, Ivan; Rispler, Manuel; Feldker, Thomas; Meth, Michael; Marciniak, Christian D.; Stricker, Roman; Ringbauer, Martin; Blatt, Rainer; Schindler, Philipp; Müller, Markus; Monz, Thomas (2022-05-25). "Demonstration of fault-tolerant universal quantum gate operations". Nature. 605 (7911): 675–680. arXiv: 2111.12654 . Bibcode:2022Natur.605..675P. doi:10.1038/s41586-022-04721-1. PMID   35614250. S2CID   244527180.
  34. Google Quantum AI (2023-02-22). "Suppressing quantum errors by scaling a surface code logical qubit". Nature. 614 (7949): 676–681. Bibcode:2023Natur.614..676G. doi: 10.1038/s41586-022-05434-1 . ISSN   1476-4687. PMC   9946823 . PMID   36813892.
  35. Boerkamp, Martijn (2023-03-20). "Breakthrough in quantum error correction could lead to large-scale quantum computers". Physics World. Retrieved 2023-04-01.
  36. Conover, Emily (2023-02-22). "Google's quantum computer reached an error-correcting milestone". ScienceNews. Retrieved 2023-04-01.
  37. Smith-Goodson, Paul (2024-04-18). "Microsoft And Quantinuum Improve Quantum Error Rates By 800x". Forbes. Retrieved 2024-07-01.
  38. Yirka, Bob (2024-04-05). "Quantinuum quantum computer using Microsoft's 'logical quantum bits' runs 14,000 experiments with no errors". Phys.org. Retrieved 2024-07-01.
  39. 1 2 Ahsan, Muhammad; Naqvi, Syed Abbas Zilqurnain; Anwer, Haider (2022-02-18). "Quantum circuit engineering for correcting coherent noise". Physical Review A. 105 (2): 022428. arXiv: 2109.03533 . Bibcode:2022PhRvA.105b2428A. doi:10.1103/physreva.105.022428. ISSN   2469-9926. S2CID   237442177.
  40. Steffen, Matthias (2022-10-20). "What's the difference between error suppression, error mitigation, and error correction?". IBM Research Blog. Retrieved 2022-11-26.

Further reading