Quantum chemistry

Last updated

Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. [1] These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics.

Contents

Chemists rely heavily on spectroscopy through which information regarding the quantization of energy on a molecular scale can be obtained. Common methods are infra-red (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and scanning probe microscopy. Quantum chemistry may be applied to the prediction and verification of spectroscopic data as well as other experimental data.

Many quantum chemistry studies are focused on the electronic ground state and excited states of individual atoms and molecules as well as the study of reaction pathways and transition states that occur during chemical reactions. Spectroscopic properties may also be predicted. Typically, such studies assume the electronic wave function is adiabatically parameterized by the nuclear positions (i.e., the Born–Oppenheimer approximation). A wide variety of approaches are used, including semi-empirical methods, density functional theory, Hartree-Fock calculations, quantum Monte Carlo methods, and coupled cluster methods.

Understanding electronic structure and molecular dynamics through the development of computational solutions to the Schrödinger equation is a central goal of quantum chemistry. Progress in the field depends on overcoming several challenges, including the need to increase the accuracy of the results for small molecular systems, and to also increase the size of large molecules that can be realistically subjected to computation, which is limited by scaling considerations — the computation time increases as a power of the number of atoms.

History

Some view the birth of quantum chemistry as starting with the discovery of the Schrödinger equation and its application to the hydrogen atom. However, a 1927 article of Walter Heitler (1904–1981) and Fritz London is often recognized as the first milestone in the history of quantum chemistry. [2] This was the first application of quantum mechanics to the diatomic hydrogen molecule, and thus to the phenomenon of the chemical bond. [3] However, prior to this a critical conceptual framework was provided by Gilbert N. Lewis in his 1916 paper The Atom and the Molecule, [4] wherein Lewis developed the first working model of valence electrons. Important contributions were also made by Yoshikatsu Sugiura [5] [6] and S.C. Wang. [7] A series of articles by Linus Pauling, written throughout the 1930s, integrated the work of Heitler, London, Sugiura, Wang, Lewis, and John C. Slater on the concept of valence and its quantum-mechanical basis into a new theoretical framework. [8] Many chemists were introduced to the field of quantum chemistry by Pauling's 1939 text The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, wherein he summarized this work (referred to widely now as valence bond theory) and explained quantum mechanics in a way which could be followed by chemists. [9] The text soon became a standard text at many universities. [10] In 1937, Hans Hellmann appears to have been the first to publish a book on quantum chemistry, in the Russian [11] and German languages. [12]

In the years to follow, this theoretical basis slowly began to be applied to chemical structure, reactivity, and bonding. In addition to the investigators mentioned above, important progress and critical contributions were made in the early years of this field by Irving Langmuir, Robert S. Mulliken, Max Born, J. Robert Oppenheimer, Hans Hellmann, Maria Goeppert Mayer, Erich Hückel, Douglas Hartree, John Lennard-Jones, and Vladimir Fock.

Electronic structure

The electronic structure of an atom or molecule is the quantum state of its electrons. [13] The first step in solving a quantum chemical problem is usually solving the Schrödinger equation (or Dirac equation in relativistic quantum chemistry) with the electronic molecular Hamiltonian, usually making use of the Born-Oppenheimer (B-O) approximation. This is called determining the electronic structure of the molecule. [14] An exact solution for the non-relativistic Schrödinger equation can only be obtained for the hydrogen atom (though exact solutions for the bound state energies of the hydrogen molecular ion within the B-O approximation have been identified in terms of the generalized Lambert W function). Since all other atomic and molecular systems involve the motions of three or more "particles", their Schrödinger equations cannot be solved analytically and so approximate and/or computational solutions must be sought. The process of seeking computational solutions to these problems is part of the field known as computational chemistry.

Valence bond theory

As mentioned above, Heitler and London's method was extended by Slater and Pauling to become the valence-bond (VB) method. In this method, attention is primarily devoted to the pairwise interactions between atoms, and this method therefore correlates closely with classical chemists' drawings of bonds. It focuses on how the atomic orbitals of an atom combine to give individual chemical bonds when a molecule is formed, incorporating the two key concepts of orbital hybridization and resonance. [15]

Molecular orbital theory

An anti-bonding molecular orbital of Butadiene Butadien4.jpg
An anti-bonding molecular orbital of Butadiene

An alternative approach to valence bond theory was developed in 1929 by Friedrich Hund and Robert S. Mulliken, in which electrons are described by mathematical functions delocalized over an entire molecule. The Hund–Mulliken approach or molecular orbital (MO) method is less intuitive to chemists, but has turned out capable of predicting spectroscopic properties better than the VB method. This approach is the conceptual basis of the Hartree–Fock method and further post Hartree–Fock methods.

Density functional theory

The Thomas–Fermi model was developed independently by Thomas and Fermi in 1927. This was the first attempt to describe many-electron systems on the basis of electronic density instead of wave functions, although it was not very successful in the treatment of entire molecules. The method did provide the basis for what is now known as density functional theory (DFT). Modern day DFT uses the Kohn–Sham method, where the density functional is split into four terms; the Kohn–Sham kinetic energy, an external potential, exchange and correlation energies. A large part of the focus on developing DFT is on improving the exchange and correlation terms. Though this method is less developed than post Hartree–Fock methods, its significantly lower computational requirements (scaling typically no worse than n3 with respect to n basis functions, for the pure functionals) allow it to tackle larger polyatomic molecules and even macromolecules. This computational affordability and often comparable accuracy to MP2 and CCSD(T) (post-Hartree–Fock methods) has made it one of the most popular methods in computational chemistry.

Chemical dynamics

A further step can consist of solving the Schrödinger equation with the total molecular Hamiltonian in order to study the motion of molecules. Direct solution of the Schrödinger equation is called quantum dynamics , whereas its solution within the semiclassical approximation is called semiclassical dynamics. Purely classical simulations of molecular motion are referred to as molecular dynamics (MD). Another approach to dynamics is a hybrid framework known as mixed quantum-classical dynamics; yet another hybrid framework uses the Feynman path integral formulation to add quantum corrections to molecular dynamics, which is called path integral molecular dynamics. Statistical approaches, using for example classical and quantum Monte Carlo methods, are also possible and are particularly useful for describing equilibrium distributions of states.

Adiabatic chemical dynamics

In adiabatic dynamics, interatomic interactions are represented by single scalar potentials called potential energy surfaces. This is the Born–Oppenheimer approximation introduced by Born and Oppenheimer in 1927. Pioneering applications of this in chemistry were performed by Rice and Ramsperger in 1927 and Kassel in 1928, and generalized into the RRKM theory in 1952 by Marcus who took the transition state theory developed by Eyring in 1935 into account. These methods enable simple estimates of unimolecular reaction rates from a few characteristics of the potential surface.

Non-adiabatic chemical dynamics

Non-adiabatic dynamics consists of taking the interaction between several coupled potential energy surface (corresponding to different electronic quantum states of the molecule). The coupling terms are called vibronic couplings. The pioneering work in this field was done by Stueckelberg, Landau, and Zener in the 1930s, in their work on what is now known as the Landau–Zener transition. Their formula allows the transition probability between two diabatic potential curves in the neighborhood of an avoided crossing to be calculated. Spin-forbidden reactions are one type of non-adiabatic reactions where at least one change in spin state occurs when progressing from reactant to product.

See also

Related Research Articles

<span class="mw-page-title-main">Chemical bond</span> Lasting attraction between atoms that enables the formation of chemical compounds

A chemical bond is a lasting attraction between atoms or ions that enables the formation of molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds, or through the sharing of electrons as in covalent bonds. The strength of chemical bonds varies considerably: there are "strong bonds" or "primary bonds" such as covalent, ionic and metallic bonds, and "weak bonds" or "secondary bonds" such as dipole–dipole interactions, the London dispersion force, and hydrogen bonding.

<span class="mw-page-title-main">Computational chemistry</span> Branch of chemistry

Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of molecules, groups of molecules, and solids. The importance of this subject stems from the fact that, with the exception of some relatively recent findings related to the hydrogen molecular ion, achieving an accurate quantum mechanical depiction of chemical systems analytically, or in a closed form, is not feasible. The complexity inherent in many-body problem exacerbates the challenge of providing detailed descriptions in quantum mechanical systems. While computational results normally complement the information obtained by chemical experiments, it can in some cases predict unobserved chemical phenomena.

<span class="mw-page-title-main">Covalent bond</span> Chemical bond by sharing of electron pairs

A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding. For many molecules, the sharing of electrons allows each atom to attain the equivalent of a full valence shell, corresponding to a stable electronic configuration. In organic chemistry, covalent bonding is much more common than ionic bonding.

<span class="mw-page-title-main">Molecule</span> Electrically neutral group of two or more atoms

A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and biochemistry, the distinction from ions is dropped and molecule is often used when referring to polyatomic ions.

<span class="mw-page-title-main">Molecular orbital</span> Wave-like behavior of an electron in a molecule

In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region. The terms atomic orbital and molecular orbital were introduced by Robert S. Mulliken in 1932 to mean one-electron orbital wave functions. At an elementary level, they are used to describe the region of space in which a function has a significant amplitude.

<span class="mw-page-title-main">Theoretical chemistry</span> Branch of chemistry

Theoretical chemistry is the branch of chemistry which develops theoretical generalizations that are part of the theoretical arsenal of modern chemistry: for example, the concepts of chemical bonding, chemical reaction, valence, the surface of potential energy, molecular orbitals, orbital interactions, and molecule activation.

<span class="mw-page-title-main">Electron configuration</span> Mode of arrangement of electrons in different shells of an atom

In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule in atomic or molecular orbitals. For example, the electron configuration of the neon atom is 1s2 2s2 2p6, meaning that the 1s, 2s and 2p subshells are occupied by 2, 2 and 6 electrons respectively.

In computational physics and chemistry, the Hartree–Fock (HF) method is a method of approximation for the determination of the wave function and the energy of a quantum many-body system in a stationary state.

In chemistry, molecular orbital theory is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century.

In chemistry, valence bond (VB) theory is one of the two basic theories, along with molecular orbital (MO) theory, that were developed to use the methods of quantum mechanics to explain chemical bonding. It focuses on how the atomic orbitals of the dissociated atoms combine to give individual chemical bonds when a molecule is formed. In contrast, molecular orbital theory has orbitals that cover the whole molecule.

In chemistry, orbital hybridisation is the concept of mixing atomic orbitals to form new hybrid orbitals suitable for the pairing of electrons to form chemical bonds in valence bond theory. For example, in a carbon atom which forms four single bonds the valence-shell s orbital combines with three valence-shell p orbitals to form four equivalent sp3 mixtures in a tetrahedral arrangement around the carbon to bond to four different atoms. Hybrid orbitals are useful in the explanation of molecular geometry and atomic bonding properties and are symmetrically disposed in space. Usually hybrid orbitals are formed by mixing atomic orbitals of comparable energies.

Electronic correlation is the interaction between electrons in the electronic structure of a quantum system. The correlation energy is a measure of how much the movement of one electron is influenced by the presence of all other electrons.

Multi-configurational self-consistent field (MCSCF) is a method in quantum chemistry used to generate qualitatively correct reference states of molecules in cases where Hartree–Fock and density functional theory are not adequate. It uses a linear combination of configuration state functions (CSF), or configuration determinants, to approximate the exact electronic wavefunction of an atom or molecule. In an MCSCF calculation, the set of coefficients of both the CSFs or determinants and the basis functions in the molecular orbitals are varied to obtain the total electronic wavefunction with the lowest possible energy. This method can be considered a combination between configuration interaction and Hartree–Fock.

In computational chemistry, post–Hartree–Fock (post-HF) methods are the set of methods developed to improve on the Hartree–Fock (HF), or self-consistent field (SCF) method. They add electron correlation which is a more accurate way of including the repulsions between electrons than in the Hartree–Fock method where repulsions are only averaged.

In theoretical and computational chemistry, a basis set is a set of functions that is used to represent the electronic wave function in the Hartree–Fock method or density-functional theory in order to turn the partial differential equations of the model into algebraic equations suitable for efficient implementation on a computer.

Modern valence bond theory is the application of valence bond theory (VBT) with computer programs that are competitive in accuracy and economy with programs for the Hartree–Fock or post-Hartree-Fock methods. The latter methods dominated quantum chemistry from the advent of digital computers because they were easier to program. The early popularity of valence bond methods thus declined. It is only recently that the programming of valence bond methods has improved. These developments are due to and described by Gerratt, Cooper, Karadakov and Raimondi (1997); Li and McWeeny (2002); Joop H. van Lenthe and co-workers (2002); Song, Mo, Zhang and Wu (2005); and Shaik and Hiberty (2004)

Jaguar is a computer software package used for ab initio quantum chemistry calculations for both gas and solution phases. It is commercial software marketed by the company Schrödinger. The program was originated in research groups of Richard Friesner and William Goddard and was initially called PS-GVB.

Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term ab initio was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. Ab initio means "from first principles" or "from the beginning", implying that the only inputs into an ab initio calculation are physical constants. Ab initio quantum chemistry methods attempt to solve the electronic Schrödinger equation given the positions of the nuclei and the number of electrons in order to yield useful information such as electron densities, energies and other properties of the system. The ability to run these calculations has enabled theoretical chemists to solve a range of problems and their importance is highlighted by the awarding of the Nobel prize to John Pople and Walter Kohn.

Qbox is an open-source software package for atomic-scale simulations of molecules, liquids and solids. It implements first principles molecular dynamics, a simulation method in which inter-atomic forces are derived from quantum mechanics. Qbox is released under a GNU General Public License (GPL) with documentation provided at http://qboxcode.org. It is available as a FreeBSD port.

References

  1. McQuarrie, Donald A. (2007). Quantum Chemistry (2nd ed.). University Science Books. ISBN   978-1891389504.
  2. Heitler, W.; London, F. (1927). "Wechselwirkung neutraler Atome und homopolare Bindung nach der Quantenmechanik". Zeitschrift für Physik. 44: 455–472.
  3. Kołos, W. (1989). "The Origin, Development and Significance of the Heitler-London Approach". Perspectives in Quantum Chemistry. Académie Internationale Des Sciences Moléculaires Quantiques/International Academy of Quantum Molecular Science. Vol. 6. Dordrecht: Springer.
  4. Lewis, G.N. "The Atom and the Molecule". Journal of the American Chemical Society . 38: 762–785.
  5. Sugiura, Y. (1927). "Über die Eigenschaften des Wasserstoffmoleküls im Grundzustande". Zeitschrift für Physik. 45: 484–492.
  6. Nakane, Michiyo (2019). "Yoshikatsu Sugiura's Contribution to the Development of Quantum Physics in Japan". Berichte zur Wissenschaftsgeschichte. 42: 338.
  7. Wang, S. C. (1928-04-01). "The Problem of the Normal Hydrogen Molecule in the New Quantum Mechanics". Physical Review. 31 (4): 579–586. doi:10.1103/PhysRev.31.579.
  8. Pauling, Linus (April 6, 1931). "The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules". Journal of the American Chemical Society . 53: 1367–1400 via Oregon State University Library.
  9. Pauling, Linus (1939). The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (1st ed.). Cornell University Press.
  10. Norman, Jeremy. "Pauling Publishes "The Nature of the Chemical Bond"". History of Information. Retrieved July 11, 2023.
  11. Хельман, Г. (1937). Квантовая Химия. Главная Редакция Технико-Теоретической Литературы, Moscow and Leningrad.
  12. Hellmann, Hans (1937). Einführung in die Quantenchemie. Deuticke, Leipzig und Wien.
  13. Simons, Jack (2003). "Chapter 6. Electronic Structures". An introduction to theoretical chemistry (PDF). Cambridge, UK: Cambridge University Press. ISBN   0521823609.
  14. Martin, Richard M. (2008-10-27). Electronic Structure: Basic Theory and Practical Methods. Cambridge: Cambridge University Press. ISBN   978-0-521-53440-6.
  15. Shaik, S.S.; Hiberty, P.C. (2007). A Chemist's Guide to Valence Bond Theory. Wiley-Interscience. ISBN   978-0470037355.

Sources