Excited state

Last updated

After absorbing energy, an electron may jump from the ground state to a higher energy excited state. Energy levels.svg
After absorbing energy, an electron may jump from the ground state to a higher energy excited state.
Excitations of copper 3d orbitals on the CuO2-plane of a high Tc superconductor; The ground state (blue) is x2-y2 orbitals; the excited orbitals are in green; the arrows illustrate inelastic x-ray spectroscopy CuO2-plane in high Tc superconductor.png
Excitations of copper 3d orbitals on the CuO2-plane of a high Tc superconductor; The ground state (blue) is x2-y2 orbitals; the excited orbitals are in green; the arrows illustrate inelastic x-ray spectroscopy

In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation is an elevation in energy level above an arbitrary baseline energy state. In physics there is a specific technical definition for energy level which is often associated with an atom being raised to an excited state.[ citation needed ][ definition needed ] The temperature of a group of particles is indicative of the level of excitation (with the notable exception of systems that exhibit negative temperature).

Contents

The lifetime of a system in an excited state is usually short: spontaneous or induced emission of a quantum of energy (such as a photon or a phonon) usually occurs shortly after the system is promoted to the excited state, returning the system to a state with lower energy (a less excited state or the ground state). This return to a lower energy level is often loosely described as decay and is the inverse of excitation.

Long-lived excited states are often called metastable. Long-lived nuclear isomers and singlet oxygen are two examples of this.

Atomic excitation

A simple example of this concept comes by considering the hydrogen atom.

The ground state of the hydrogen atom corresponds to having the atom's single electron in the lowest possible orbital (that is, the spherically symmetric "1s" wave function, which, so far, has demonstrated to have the lowest possible quantum numbers). By giving the atom additional energy (for example, by the absorption of a photon of an appropriate energy), the electron is able to move into an excited state (one with one or more quantum numbers greater than the minimum possible). If the photon has too much energy, the electron will cease to be bound to the atom, and the atom will become ionized.

After excitation the atom may return to the ground state or a lower excited state, by emitting a photon with a characteristic energy. Emission of photons from atoms in various excited states leads to an electromagnetic spectrum showing a series of characteristic emission lines (including, in the case of the hydrogen atom, the Lyman, Balmer, Paschen and Brackett series.)

An atom in a high excited state is termed a Rydberg atom. A system of highly excited atoms can form a long-lived condensed excited state e.g. a condensed phase made completely of excited atoms: Rydberg matter. Hydrogen can also be excited by heat or electricity.

Perturbed gas excitation

A collection of molecules forming a gas can be considered in an excited state if one or more molecules are elevated to kinetic energy levels such that the resulting velocity distribution departs from the equilibrium Boltzmann distribution. This phenomenon has been studied in the case of a two-dimensional gas in some detail, analyzing the time taken to relax to equilibrium.

Calculation of excited states

Excited states are often calculated using coupled cluster, Møller–Plesset perturbation theory, multi-configurational self-consistent field, configuration interaction, [1] and time-dependent density functional theory. [2] [3] [4] [5] [6] [7]

Excited state absorption

The excitation of a system (an atom or molecule) from one excited state to a higher energy excited state with the absorption of a photon is called excited state absorption (ESA). Excited state absorption is possible only when an electron has been already excited from the ground state to a lower excited state. The excited state absorption is usually an undesired effect, but it can be useful in upconversion pumping. [8] Excited state absorption measurements are done using pump-probe techniques such as flash photolysis. However, it is not easy to measure them compared to ground-state absorption and in some cases complete bleaching of the ground state is required to measure excited state absorption. [9]

Reaction

A further consequence of excited state formation may be reaction of the atom or molecule in its excited state, as in photochemistry.

See also

Related Research Articles

In science, specifically statistical mechanics, a population inversion occurs while a system exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energy states. It is called an "inversion" because in many familiar and commonly encountered physical systems, this is not possible. This concept is of fundamental importance in laser science because the production of a population inversion is a necessary step in the workings of a standard laser.

Spontaneous emission is the process in which a quantum mechanical system transits from an excited energy state to a lower energy state and emits a quantized amount of energy in the form of a photon. Spontaneous emission is ultimately responsible for most of the light we see all around us; it is so ubiquitous that there are many names given to what is essentially the same process. If atoms are excited by some means other than heating, the spontaneous emission is called luminescence. For example, fireflies are luminescent. And there are different forms of luminescence depending on how excited atoms are produced. If the excitation is affected by the absorption of radiation the spontaneous emission is called fluorescence. Sometimes molecules have a metastable level and continue to fluoresce long after the exciting radiation is turned off; this is called phosphorescence. Figurines that glow in the dark are phosphorescent. Lasers start via spontaneous emission, then during continuous operation work by stimulated emission.

Exciton Quasiparticle which is a bound state of an electron and an electron hole

An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. The exciton is regarded as an elementary excitation of condensed matter that can transport energy without transporting net electric charge.

Energy level Different states of quantum systems

A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The term is commonly used for the energy levels of the electrons in atoms, ions, or molecules, which are bound by the electric field of the nucleus, but can also refer to energy levels of nuclei or vibrational or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be quantized.

Photoluminescence light emission from substances after they absorb photons

Photoluminescence is light emission from any form of matter after the absorption of photons. It is one of many forms of luminescence and is initiated by photoexcitation, hence the prefix photo-. Following excitation various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors up to milliseconds for Phosphorescence processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.

Electron configuration The mode of arrangement of electrons in different shells of an atom.

In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule in atomic or molecular orbitals. For example, the electron configuration of the neon atom is 1s2 2s2 2p6, meaning that the 1s, 2s and 2p subshells are occupied by 2, 2 and 6 electrons respectively.

Emission spectrum Frequencies of light emitted by atoms or chemical compounds

The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an atom or molecule making a transition from a high energy state to a lower energy state. The photon energy of the emitted photon is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.

Photochemistry Sub-discipline of chemistry

Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet, visible light (400–750 nm) or infrared radiation (750–2500 nm).

Intersystem crossing

Intersystem crossing (ISC) is an isoenergetic radiationless process involving a transition between the two electronic states with different states spin multiplicity.

Rydberg atom Excited atomic quantum state with high principal quantum number (n)

A Rydberg atom is an excited atom with one or more electrons that have a very high principal quantum number, n. The higher the value of n, the farther the electron is from the nucleus, on average. Rydberg atoms have a number of peculiar properties including an exaggerated response to electric and magnetic fields, long decay periods and electron wavefunctions that approximate, under some conditions, classical orbits of electrons about the nuclei. The core electrons shield the outer electron from the electric field of the nucleus such that, from a distance, the electric potential looks identical to that experienced by the electron in a hydrogen atom.

Franck–Condon principle

The Franck–Condon principle is a rule in spectroscopy and quantum chemistry that explains the intensity of vibronic transitions. Vibronic transitions are the simultaneous changes in electronic and vibrational energy levels of a molecule due to the absorption or emission of a photon of the appropriate energy. The principle states that during an electronic transition, a change from one vibrational energy level to another will be more likely to happen if the two vibrational wave functions overlap more significantly.

Photosensitizer

Photosensitizers produce a physicochemical change in a neighboring molecule by either donating an electron to the substrate or by abstracting a hydrogen atom from the substrate. At the end of this process, the photosensitizer eventually returns to its ground state, where it remains chemically intact until the photosensitizer absorbs more light. This means that the photosensitizer remains unchanged before and after the energetic exchange, much like heterogeneous photocatalysis. One branch of chemistry which frequently utilizes photosensitizers is polymer chemistry, using photosensitizers in reactions such as photopolymerization, photocrosslinking, and photodegradation. Photosensitizers are also used to generate prolonged excited electronic states in organic molecules with uses in photocatalysis, photon upconversion and photodynamic therapy. Generally, photosensitizers absorb electromagnetic radiation consisting of infrared radiation, visible light radiation, and ultraviolet radiation and transfer absorbed energy into neighboring molecules. This absorption of light is made possible by photosensitizers' large de-localized π-systems, which lowers the energy of HOMO and LUMO orbitals to promote photoexcitation. While many photosensitizers are organic or organometallic compounds, there are also examples of using semiconductor quantum dots as photosensitizers.

Hydrogen spectral series Important atomic emission spectra

The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom. The classification of the series by the Rydberg formula was important in the development of quantum mechanics. The spectral series are important in astronomical spectroscopy for detecting the presence of hydrogen and calculating red shifts.

A Rydberg molecule is an electronically excited chemical species. Electronically excited molecular states are generally quite different in character from electronically excited atomic states. However, particularly for highly electronically excited molecular systems, the ionic core interaction with an excited electron can take on the general aspects of the interaction between the proton and the electron in the hydrogen atom. The spectroscopic assignment of these states follows the Rydberg formula, named after the Swedish physicist Johannes Rydberg, and they are called Rydberg states of molecules. Rydberg series are associated with partially removing an electron from the ionic core.

A heavy Rydberg system consists of a weakly bound positive and negative ion orbiting their common centre of mass. Such systems share many properties with the conventional Rydberg atom and consequently are sometimes referred to as heavy Rydberg atoms. While such a system is a type of ionically bound molecule, it should not be confused with a molecular Rydberg state, which is simply a molecule with one or more highly excited electrons.

In X-ray absorption spectroscopy, the K-edge is a sudden increase in x-ray absorption occurring when the energy of the X-rays is just above the binding energy of the innermost electron shell of the atoms interacting with the photons. The term is based on X-ray notation, where the innermost electron shell is known as the K-shell. Physically, this sudden increase in attenuation is caused by the photoelectric absorption of the photons. For this interaction to occur, the photons must have more energy than the binding energy of the K-shell electrons (K-edge). A photon having an energy just above the binding energy of the electron is therefore more likely to be absorbed than a photon having an energy just below this binding energy or significantly above it.

Photoluminescence excitation is a specific type of photoluminescence and concerns the interaction between electromagnetic radiation and matter. It is used in spectroscopic measurements where the frequency of the excitation light is varied, and the luminescence is monitored at the typical emission frequency of the material being studied. Peaks in the PLE spectra often represent absorption lines of the material. PLE spectroscopy is a useful method to investigate the electronic level structure of materials with low absorption due to the superior signal-to-noise ratio of the method compared to absorption measurements.

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

Bond softening is an effect of reducing the strength of a chemical bond by strong laser fields. To make this effect significant, the strength of the electric field in the laser light has to be comparable with the electric field the bonding electron "feels" from the nuclei of the molecule. Such fields are typically in the range of 1–10 V/Å, which corresponds to laser intensities 1013–1015 W/cm2. Nowadays, these intensities are routinely achievable from table-top Ti:Sapphire lasers.

The helium dimer is a van der Waals molecule with formula He2 consisting of two helium atoms. This chemical is the largest diatomic molecule—a molecule consisting of two atoms bonded together. The bond that holds this dimer together is so weak that it will break if the molecule rotates, or vibrates too much. It can only exist at very low cryogenic temperatures.

References

  1. Hehre, Warren J. (2003). A Guide to Molecular Mechanics and Quantum Chemical Calculations (PDF). Irvine, California: Wavefunction, Inc. ISBN   1-890661-06-6.
  2. Glaesemann, Kurt R.; Govind, Niranjan; Krishnamoorthy, Sriram; Kowalski, Karol (2010). "EOMCC, MRPT, and TDDFT Studies of Charge Transfer Processes in Mixed-Valence Compounds: Application to the Spiro Molecule". The Journal of Physical Chemistry A. 114 (33): 8764–8771. Bibcode:2010JPCA..114.8764G. doi:10.1021/jp101761d. PMID   20540550.
  3. Dreuw, Andreas; Head-Gordon, Martin (2005). "Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules". Chemical Reviews. 105 (11): 4009–37. doi:10.1021/cr0505627. PMID   16277369.
  4. Knowles, Peter J.; Werner, Hans-Joachim (1992). "Internally contracted multiconfiguration-reference configuration interaction calculations for excited states". Theoretica Chimica Acta. 84 (1–2): 95–103. doi:10.1007/BF01117405. S2CID   96830841.
  5. Foresman, James B.; Head-Gordon, Martin; Pople, John A.; Frisch, Michael J. (1992). "Toward a systematic molecular orbital theory for excited states". The Journal of Physical Chemistry. 96: 135–149. doi:10.1021/j100180a030.
  6. Glaesemann, Kurt R.; Gordon, Mark S.; Nakano, Haruyuki (1999). "A study of FeCO+ with correlated wavefunctions". Physical Chemistry Chemical Physics. 1 (6): 967–975. Bibcode:1999PCCP....1..967G. doi:10.1039/a808518h.
  7. Ariyarathna, Isuru (2021-03-01). First Principle Studies on Ground and Excited Electronic States: Chemical Bonding in Main-Group Molecules, Molecular Systems with Diffuse Electrons, and Water Activation using Transition Metal Monoxides (Thesis). hdl: 10415/7601 .
  8. Paschotta, Dr Rüdiger. "Excited-state Absorption". www.rp-photonics.com.
  9. Dolan, Giora; Goldschmidt, Chmouel R (1976). "A new method for absolute absorption cross-section measurements: rhodamine-6G excited singlet-singlet absorption spectrum". Chemical Physics Letters. 39 (2): 320–322. Bibcode:1976CPL....39..320D. doi:10.1016/0009-2614(76)80085-1.