A Rydberg atom is an excited atom with one or more electrons that have a very high principal quantum number, n. [1] [2] The higher the value of n, the farther the electron is from the nucleus, on average. Rydberg atoms have a number of peculiar properties including an exaggerated response to electric and magnetic fields, [3] long decay periods and electron wavefunctions that approximate, under some conditions, classical orbits of electrons about the nuclei. [4] The core electrons shield the outer electron from the electric field of the nucleus such that, from a distance, the electric potential looks identical to that experienced by the electron in a hydrogen atom. [5]
In spite of its shortcomings, the Bohr model of the atom is useful in explaining these properties. Classically, an electron in a circular orbit of radius r, about a hydrogen nucleus of charge + e , obeys Newton's second law:
where k = 1/(4πε0).
Orbital momentum is quantized in units of ħ :
Combining these two equations leads to Bohr's expression for the orbital radius in terms of the principal quantum number, n:
It is now apparent why Rydberg atoms have such peculiar properties: the radius of the orbit scales as n2 (the n = 137 state of hydrogen has an atomic radius ~1 μm) and the geometric cross-section as n4. Thus, Rydberg atoms are extremely large, with loosely bound valence electrons, easily perturbed or ionized by collisions or external fields.
Because the binding energy of a Rydberg electron is proportional to 1/r and hence falls off like 1/n2, the energy level spacing falls off like 1/n3 leading to ever more closely spaced levels converging on the first ionization energy. These closely spaced Rydberg states form what is commonly referred to as the Rydberg series. Figure 2 shows some of the energy levels of the lowest three values of orbital angular momentum in lithium.
The existence of the Rydberg series was first demonstrated in 1885 when Johann Balmer discovered a simple empirical formula for the wavelengths of light associated with transitions in atomic hydrogen. Three years later, the Swedish physicist Johannes Rydberg presented a generalized and more intuitive version of Balmer's formula that came to be known as the Rydberg formula. This formula indicated the existence of an infinite series of ever more closely spaced discrete energy levels converging on a finite limit. [6]
This series was qualitatively explained in 1913 by Niels Bohr with his semiclassical model of the hydrogen atom in which quantized values of angular momentum lead to the observed discrete energy levels. [7] [8] A full quantitative derivation of the observed spectrum was derived by Wolfgang Pauli in 1926 following development of quantum mechanics by Werner Heisenberg and others.
The only truly stable state of a hydrogen-like atom is the ground state with n = 1. The study of Rydberg states requires a reliable technique for exciting ground state atoms to states with a large value of n.
Much early experimental work on Rydberg atoms relied on the use of collimated beams of fast electrons incident on ground-state atoms. [9] Inelastic scattering processes can use the electron kinetic energy to increase the atoms' internal energy exciting to a broad range of different states including many high-lying Rydberg states,
Because the electron can retain any arbitrary amount of its initial kinetic energy, this process results in a population with a broad spread of different energies.
Another mainstay of early Rydberg atom experiments relied on charge exchange between a beam of ions and a population of neutral atoms of another species, resulting in the formation of a beam of highly excited atoms, [10]
Again, because the kinetic energy of the interaction can contribute to the final internal energies of the constituents, this technique populates a broad range of energy levels.
The arrival of tunable dye lasers in the 1970s allowed a much greater level of control over populations of excited atoms. In optical excitation, the incident photon is absorbed by the target atom, resulting in a precise final state energy. The problem of producing single state, mono-energetic populations of Rydberg atoms thus becomes the somewhat simpler problem of precisely controlling the frequency of the laser output,
This form of direct optical excitation is generally limited to experiments with the alkali metals, because the ground state binding energy in other species is generally too high to be accessible with most laser systems.
For atoms with a large valence electron binding energy (equivalent to a large first ionization energy), the excited states of the Rydberg series are inaccessible with conventional laser systems. Initial collisional excitation can make up the energy shortfall allowing optical excitation to be used to select the final state. Although the initial step excites to a broad range of intermediate states, the precision inherent in the optical excitation process means that the laser light only interacts with a specific subset of atoms in a particular state, exciting to the chosen final state.
An atom in a Rydberg state has a valence electron in a large orbit far from the ion core; in such an orbit, the outermost electron feels an almost hydrogenic Coulomb potential, UC, from a compact ion core consisting of a nucleus with Z protons and the lower electron shells filled with Z-1 electrons. An electron in the spherically symmetric Coulomb potential has potential energy:
The similarity of the effective potential "seen" by the outer electron to the hydrogen potential is a defining characteristic of Rydberg states and explains why the electron wavefunctions approximate to classical orbits in the limit of the correspondence principle. [11] In other words, the electron's orbit resembles the orbit of planets inside a solar system, similar to what was seen in the obsolete but visually useful Bohr and Rutherford models of the atom.
There are three notable exceptions that can be characterized by the additional term added to the potential energy:
Quantum-mechanically, a state with abnormally high n refers to an atom in which the valence electron(s) have been excited into a formerly unpopulated electron orbital with higher energy and lower binding energy. In hydrogen the binding energy is given by:
where Ry = 13.6 eV is the Rydberg constant. The low binding energy at high values of n explains why Rydberg states are susceptible to ionization.
Additional terms in the potential energy expression for a Rydberg state, on top of the hydrogenic Coulomb potential energy require the introduction of a quantum defect, [5] δℓ, into the expression for the binding energy:
The long lifetimes of Rydberg states with high orbital angular momentum can be explained in terms of the overlapping of wavefunctions. The wavefunction of an electron in a high ℓ state (high angular momentum, “circular orbit”) has very little overlap with the wavefunctions of the inner electrons and hence remains relatively unperturbed.
The three exceptions to the definition of a Rydberg atom as an atom with a hydrogenic potential, have an alternative, quantum mechanical description that can be characterized by the additional term(s) in the atomic Hamiltonian:
The large separation between the electron and ion-core in a Rydberg atom makes possible an extremely large electric dipole moment, d. There is an energy associated with the presence of an electric dipole in an electric field, F, known in atomic physics as a Stark shift,
Depending on the sign of the projection of the dipole moment onto the local electric field vector, a state may have energy that increases or decreases with field strength (low-field and high-field seeking states respectively). The narrow spacing between adjacent n-levels in the Rydberg series means that states can approach degeneracy even for relatively modest field strengths. The theoretical field strength at which a crossing would occur assuming no coupling between the states is given by the Inglis–Teller limit, [17]
In the hydrogen atom, the pure 1/r Coulomb potential does not couple Stark states from adjacent n-manifolds resulting in real crossings as shown in figure 5. The presence of additional terms in the potential energy can lead to coupling resulting in avoided crossings as shown for lithium in figure 6.
The radiative decay lifetimes of atoms in metastable states to the ground state are important to understanding astrophysics observations and tests of the standard model. [18]
The large sizes and low binding energies of Rydberg atoms lead to a high magnetic susceptibility, . As diamagnetic effects scale with the area of the orbit and the area is proportional to the radius squared (A ∝ n4), effects impossible to detect in ground state atoms become obvious in Rydberg atoms, which demonstrate very large diamagnetic shifts. [19]
Rydberg atoms exhibit strong electric-dipole coupling of the atoms to electromagnetic fields and has been used to detect radio communications. [20] [21]
Rydberg atoms form commonly in plasmas due to the recombination of electrons and positive ions; low energy recombination results in fairly stable Rydberg atoms, while recombination of electrons and positive ions with high kinetic energy often form autoionising Rydberg states. Rydberg atoms’ large sizes and susceptibility to perturbation and ionisation by electric and magnetic fields, are an important factor determining the properties of plasmas. [22]
Condensation of Rydberg atoms forms Rydberg matter, most often observed in form of long-lived clusters. The de-excitation is significantly impeded in Rydberg matter by exchange-correlation effects in the non-uniform electron liquid formed on condensation by the collective valence electrons, which causes extended lifetime of clusters. [23]
Rydberg atoms occur in space due to the dynamic equilibrium between photoionization by hot stars and recombination with electrons, which at these very low densities usually proceeds via the electron re-joining the atom in a very high n state, and then gradually dropping through the energy levels to the ground state, giving rise to a sequence of recombination spectral lines spread across the electromagnetic spectrum. The very small differences in energy between Rydberg states differing in n by one or a few means that photons emitted in transitions between such states have low frequencies and long wavelengths, even up to radio waves. The first detection of such a radio recombination line (RRL) was by Soviet radio astronomers in 1964; the line, designated H90α, was emitted by hydrogen atoms in the n = 90 state. [24] Today, Rydberg atoms of hydrogen, helium and carbon in space are routinely observed via RRLs, the brightest of which are the Hnα lines corresponding to transitions from n+1 to n. Weaker lines, Hnβ and Hnγ, with Δn = 2 and 3 are also observed. Corresponding lines for helium and carbon are Henα, Cnα, and so on. [25] The discovery of lines with n > 100 was surprising, as even in the very low densities of interstellar space, many orders of magnitude lower than the best laboratory vacuums attainable on Earth, it had been expected that such highly-excited atoms would be frequently destroyed by collisions, rendering the lines unobservable. Improved theoretical analysis showed that this effect had been overestimated, although collisional broadening does eventually limit detectability of the lines at very high n. [25] The record wavelength for hydrogen is λ = 73 cm for H253α, implying atomic diameters of a few microns, and for carbon, λ = 18 metres, from C732α, [26] from atoms with a diameter of 57 micron.
RRLs from hydrogen and helium are produced in highly ionized regions (H II regions and the Warm Ionised Medium). Carbon has a lower ionization energy than hydrogen, and so singly-ionized carbon atoms, and the corresponding recombining Rydberg states, exist further from the ionizing stars, in so-called C II regions which form thick shells around H II regions. The larger volume partially compensates for the low abundance of C compared to H, making the carbon RRLs detectable.
In the absence of collisional broadening, the wavelengths of RRLs are modified only by the Doppler effect, so the measured wavelength, , is usually converted to radial velocity, , where is the rest-frame wavelength. H II regions in our Galaxy can have radial velocities up to ±150 km/s, due to their motion relative to Earth as both orbit the centre of the Galaxy. [27] These motions are regular enough that can be used to estimate the position of the H II region on the line of sight and so its 3D position in the Galaxy. Because all astrophysical Rydberg atoms are hydrogenic, the frequencies of transitions for H, He, and C are given by the same formula, except for the slightly different reduced mass of the valence electron for each element. This gives helium and carbon lines apparent Doppler shifts of −100 and −140 km/s, respectively, relative to the corresponding hydrogen line.
RRLs are used to detect ionized gas in distant regions of our Galaxy, and also in external galaxies, because the radio photons are not absorbed by interstellar dust, which blocks photons from the more familiar optical transitions. [28] They are also used to measure the temperature of the ionized gas, via the ratio of line intensity to the continuum bremsstrahlung emission from the plasma. [25] Since the temperature of H II regions is regulated by line emission from heavier elements such as C, N, and O, recombination lines also indirectly measure their abundance (metallicity). [29]
RRLs are spread across the radio spectrum with relatively small intervals in wavelength between them, so they frequently occur in radio spectral observations primarily targeted at other spectral lines. For instance, H166α, H167α, and H168α are very close in wavelength to the 21-cm line from neutral hydrogen. This allows radio astronomers to study both the neutral and the ionized interstellar medium from the same set of observations. [30] Since RRLs are numerous and weak, common practice is to average the velocity spectra of several neighbouring lines, to improve sensitivity.
There are a variety of other potential applications of Rydberg atoms in cosmology and astrophysics. [31]
Due to their large size, Rydberg atoms can exhibit very large electric dipole moments. Calculations using perturbation theory show that this results in strong interactions between two close Rydberg atoms. Coherent control of these interactions combined with their relatively long lifetime makes them a suitable candidate to realize a quantum computer. [32] In 2010 two-qubit gates were achieved experimentally. [33] [34] Strongly interacting Rydberg atoms also feature quantum critical behavior, which makes them interesting to study on their own. [35]
Since 2000's Rydberg atoms research encompasses broadly five directions: sensing, quantum optics, [36] [37] [38] [39] [40] [41] quantum computation, [42] [43] [44] [45] quantum simulation [46] [2] [47] [48] and Rydberg states of matter. [49] [50] High electric dipole moments between Rydberg atomic states are used for radio frequency and terahertz sensing and imaging, [51] [52] including non-demolition measurements of individual microwave photons. [53] Electromagnetically induced transparency was used in combination with strong interactions between two atoms excited in Rydberg state to provide medium that exhibits strongly nonlinear behaviour at the level of individual optical photons. [54] [55] The tuneable interaction between Rydberg states, enabled also first quantum simulation experiments. [56] [57]
In October 2018, the United States Army Research Laboratory publicly discussed efforts to develop a super wideband radio receiver using Rydberg atoms. [58] In March 2020, the laboratory announced that its scientists analysed the Rydberg sensor's sensitivity to oscillating electric fields over an enormous range of frequencies—from 0 to 1012 Hertz (the spectrum to 0.3mm wavelength). The Rydberg sensor can reliably detect signals over the entire spectrum and compare favourably with other established electric field sensor technologies, such as electro-optic crystals and dipole antenna-coupled passive electronics. [59] [60]
A simple 1/r potential results in a closed Keplerian elliptical orbit. In the presence of an external electric field Rydberg atoms can obtain very large electric dipole moments making them extremely susceptible to perturbation by the field. Figure 7 shows how application of an external electric field (known in atomic physics as a Stark field) changes the geometry of the potential, dramatically changing the behaviour of the electron. A Coulombic potential does not apply any torque as the force is always antiparallel to the position vector (always pointing along a line running between the electron and the nucleus):
With the application of a static electric field, the electron feels a continuously changing torque. The resulting trajectory becomes progressively more distorted over time, eventually going through the full range of angular momentum from L = LMAX, to a straight line L = 0, to the initial orbit in the opposite sense L = −LMAX. [61]
The time period of the oscillation in angular momentum (the time to complete the trajectory in figure 8), almost exactly matches the quantum mechanically predicted period for the wavefunction to return to its initial state, demonstrating the classical nature of the Rydberg atom.
An electron and an electron hole that are attracted to each other by the Coulomb force can form a bound state called an exciton. It is an electrically neutral quasiparticle that exists mainly in condensed matter, including insulators, semiconductors, some metals, but also in certain atoms, molecules and liquids. The exciton is regarded as an elementary excitation that can transport energy without transporting net electric charge.
In atomic physics and chemistry, an atomic electron transition is an electron changing from one energy level to another within an atom or artificial atom. The time scale of a quantum jump has not been measured experimentally. However, the Franck–Condon principle binds the upper limit of this parameter to the order of attoseconds.
Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules, electrons, positrons, protons, antiprotons and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.
Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. Therefore, even at absolute zero, atoms and molecules retain some vibrational motion. Apart from atoms and molecules, the empty space of the vacuum also has these properties. According to quantum field theory, the universe can be thought of not as isolated particles but continuous fluctuating fields: matter fields, whose quanta are fermions, and force fields, whose quanta are bosons. All these fields have zero-point energy. These fluctuating zero-point fields lead to a kind of reintroduction of an aether in physics since some systems can detect the existence of this energy. However, this aether cannot be thought of as a physical medium if it is to be Lorentz invariant such that there is no contradiction with Einstein's theory of special relativity.
Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. At all scales where measurements have been practical, matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave.
A bound state is a composite of two or more fundamental building blocks, such as particles, atoms, or bodies, that behaves as a single object and in which energy is required to split them.
Resolved sideband cooling is a laser cooling technique allowing cooling of tightly bound atoms and ions beyond the Doppler cooling limit, potentially to their motional ground state. Aside from the curiosity of having a particle at zero point energy, such preparation of a particle in a definite state with high probability (initialization) is an essential part of state manipulation experiments in quantum optics and quantum computing.
In quantum field theory, and specifically quantum electrodynamics, vacuum polarization describes a process in which a background electromagnetic field produces virtual electron–positron pairs that change the distribution of charges and currents that generated the original electromagnetic field. It is also sometimes referred to as the self-energy of the gauge boson (photon).
The electron electric dipole momentde is an intrinsic property of an electron such that the potential energy is linearly related to the strength of the electric field:
A g-factor is a dimensionless quantity that characterizes the magnetic moment and angular momentum of an atom, a particle or the nucleus. It is the ratio of the magnetic moment of a particle to that expected of a classical particle of the same charge and angular momentum. In nuclear physics, the nuclear magneton replaces the classically expected magnetic moment in the definition. The two definitions coincide for the proton.
Car–Parrinello molecular dynamics or CPMD refers to either a method used in molecular dynamics or the computational chemistry software package used to implement this method.
In spectroscopy, the Autler–Townes effect, is a dynamical Stark effect corresponding to the case when an oscillating electric field is tuned in resonance to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.
Quantum electrodynamics (QED), a relativistic quantum field theory of electrodynamics, is among the most stringently tested theories in physics. The most precise and specific tests of QED consist of measurements of the electromagnetic fine-structure constant, α, in various physical systems. Checking the consistency of such measurements tests the theory.
In quantum mechanics, orbital magnetization, Morb, refers to the magnetization induced by orbital motion of charged particles, usually electrons in solids. The term "orbital" distinguishes it from the contribution of spin degrees of freedom, Mspin, to the total magnetization. A nonzero orbital magnetization requires broken time-reversal symmetry, which can occur spontaneously in ferromagnetic and ferrimagnetic materials, or can be induced in a non-magnetic material by an applied magnetic field.
Photonic molecules are a form of matter in which photons bind together to form "molecules". They were first predicted in 2007. Photonic molecules are formed when individual (massless) photons "interact with each other so strongly that they act as though they have mass". In an alternative definition, photons confined to two or more coupled optical cavities also reproduce the physics of interacting atomic energy levels, and have been termed as photonic molecules.
Quantum microscopy allows microscopic properties of matter and quantum particles to be measured and imaged. Various types of microscopy use quantum principles. The first microscope to do so was the scanning tunneling microscope, which paved the way for development of the photoionization microscope and the quantum entanglement microscope.
Electric dipole spin resonance (EDSR) is a method to control the magnetic moments inside a material using quantum mechanical effects like the spin–orbit interaction. Mainly, EDSR allows to flip the orientation of the magnetic moments through the use of electromagnetic radiation at resonant frequencies. EDSR was first proposed by Emmanuel Rashba.
In theoretical physics, the dual photon is a hypothetical elementary particle that is a dual of the photon under electric–magnetic duality which is predicted by some theoretical models, including M-theory.
A Rydberg polaron is an exotic quasiparticle, created at low temperatures, in which a very large atom contains other ordinary atoms in the space between the nucleus and the electrons. For the formation of this atom, scientists had to combine two fields of atomic physics: Bose–Einstein condensates and Rydberg atoms. Rydberg atoms are formed by exciting a single atom into a high-energy state, in which the electron is very far from the nucleus. Bose–Einstein condensates are a state of matter that is produced at temperatures close to absolute zero.
An electron-on-helium qubit is a quantum bit for which the orthonormal basis states |0⟩ and |1⟩ are defined by quantized motional states or alternatively the spin states of an electron trapped above the surface of liquid helium. The electron-on-helium qubit was proposed as the basic element for building quantum computers with electrons on helium by Platzman and Dykman in 1999.