Eccentricity (mathematics)

Last updated
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity [?] is an infinitesimally separated pair of lines.
A circle of finite radius has an infinitely distant directrix, while a pair of lines of finite separation have an infinitely distant focus. Eccentricity.png
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity is an infinitesimally separated pair of lines.
A circle of finite radius has an infinitely distant directrix, while a pair of lines of finite separation have an infinitely distant focus.

In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape.

Contents

One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular:

Two conic sections with the same eccentricity are similar.

Definitions

Plane section of a cone Exzentr3d-s.svg
Plane section of a cone

Any conic section can be defined as the locus of points whose distances to a point (the focus) and a line (the directrix) are in a constant ratio. That ratio is called the eccentricity, commonly denoted as e.

The eccentricity can also be defined in terms of the intersection of a plane and a double-napped cone associated with the conic section. If the cone is oriented with its axis vertical, the eccentricity is [1]

where β is the angle between the plane and the horizontal and α is the angle between the cone's slant generator and the horizontal. For the plane section is a circle, for a parabola. (The plane must not meet the vertex of the cone.)

The linear eccentricity of an ellipse or hyperbola, denoted c (or sometimes f or e), is the distance between its center and either of its two foci. The eccentricity can be defined as the ratio of the linear eccentricity to the semimajor axis a: that is, (lacking a center, the linear eccentricity for parabolas is not defined). It is worth to note that a parabola can be treated as an ellipse or a hyperbola, but with one focal point at infinity.

Alternative names

The eccentricity is sometimes called the first eccentricity to distinguish it from the second eccentricity and third eccentricity defined for ellipses (see below). The eccentricity is also sometimes called the numerical eccentricity.

In the case of ellipses and hyperbolas the linear eccentricity is sometimes called the half-focal separation.

Notation

Three notational conventions are in common use:

  1. e for the eccentricity and c for the linear eccentricity.
  2. ε for the eccentricity and e for the linear eccentricity.
  3. e or ϵ< for the eccentricity and f for the linear eccentricity (mnemonic for half-focal separation).

This article uses the first notation.

Values

Standard form

Conic sectionEquationEccentricity (e)Linear eccentricity (c)
Circle
Ellipse or where
Parabola undefined ()
Hyperbola or

Here, for the ellipse and the hyperbola, a is the length of the semi-major axis and b is the length of the semi-minor axis.

General form

When the conic section is given in the general quadratic form

the following formula gives the eccentricity e if the conic section is not a parabola (which has eccentricity equal to 1), not a degenerate hyperbola or degenerate ellipse, and not an imaginary ellipse: [2]

where if the determinant of the 3×3 matrix

is negative or if that determinant is positive.

Ellipse and hyperbola with constant a and changing eccentricity e. Ellipse and hyperbola.gif
Ellipse and hyperbola with constant a and changing eccentricity e.

Ellipses

The eccentricity of an ellipse is strictly less than 1. When circles (which have eccentricity 0) are counted as ellipses, the eccentricity of an ellipse is greater than or equal to 0; if circles are given a special category and are excluded from the category of ellipses, then the eccentricity of an ellipse is strictly greater than 0.

For any ellipse, let a be the length of its semi-major axis and b be the length of its semi-minor axis. In the coordinate system with origin at the ellipse's center and x-axis aligned with the major axis, points on the ellipse satisfy the equation

with foci at coordinates for

We define a number of related additional concepts (only for ellipses):

NameSymbolin terms of a and bin terms of e
First eccentricity
Second eccentricity
Third eccentricity
Angular eccentricity
First eccentricity e in terms of semi-major a and semi-minor b axes: e2 + (b/a)2 = 1 Pythagorean theorem ellipse eccentricity.svg
First eccentricity e in terms of semi-major a and semi-minor b axes: e² + (b/a)² = 1

Other formulae for the eccentricity of an ellipse

The eccentricity of an ellipse is, most simply, the ratio of the linear eccentricity c (distance between the center of the ellipse and each focus) to the length of the semimajor axis a.

The eccentricity is also the ratio of the semimajor axis a to the distance d from the center to the directrix:

The eccentricity can be expressed in terms of the flattening f (defined as for semimajor axis a and semiminor axis b):

(Flattening may be denoted by g in some subject areas if f is linear eccentricity.)

Define the maximum and minimum radii and as the maximum and minimum distances from either focus to the ellipse (that is, the distances from either focus to the two ends of the major axis). Then with semimajor axis a, the eccentricity is given by

which is the distance between the foci divided by the length of the major axis.

Hyperbolas

The eccentricity of a hyperbola can be any real number greater than 1, with no upper bound. The eccentricity of a rectangular hyperbola is .

Quadrics

Ellipses, hyperbolas with all possible eccentricities from zero to infinity and a parabola on one cubic surface. Cubic surface.gif
Ellipses, hyperbolas with all possible eccentricities from zero to infinity and a parabola on one cubic surface.

The eccentricity of a three-dimensional quadric is the eccentricity of a designated section of it. For example, on a triaxial ellipsoid, the meridional eccentricity is that of the ellipse formed by a section containing both the longest and the shortest axes (one of which will be the polar axis), and the equatorial eccentricity is the eccentricity of the ellipse formed by a section through the centre, perpendicular to the polar axis (i.e. in the equatorial plane). But: conic sections may occur on surfaces of higher order, too (see image).

Celestial mechanics

In celestial mechanics, for bound orbits in a spherical potential, the definition above is informally generalized. When the apocenter distance is close to the pericenter distance, the orbit is said to have low eccentricity; when they are very different, the orbit is said be eccentric or having eccentricity near unity. This definition coincides with the mathematical definition of eccentricity for ellipses, in Keplerian, i.e., potentials.

Analogous classifications

A number of classifications in mathematics use derived terminology from the classification of conic sections by eccentricity:

See also

Related Research Articles

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Paraboloid</span> Quadric surface with one axis of symmetry and no center of symmetry

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

<span class="mw-page-title-main">Quadratic function</span> Polynomial function of degree two

In mathematics, a quadratic function of a single variable is a function of the form

In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic. The technique does not require putting the equation of a conic section into a standard form, thus making it easier to investigate those conic sections whose axes are not parallel to the coordinate system.

<span class="mw-page-title-main">Degenerate conic</span> 2nd-degree plane curve which is reducible

In geometry, a degenerate conic is a conic that fails to be an irreducible curve. This means that the defining equation is factorable over the complex numbers as the product of two linear polynomials.

<span class="mw-page-title-main">Dupin cyclide</span> Geometric inversion of a torus, cylinder or double cone

In mathematics, a Dupin cyclide or cyclide of Dupin is any geometric inversion of a standard torus, cylinder or double cone. In particular, these latter are themselves examples of Dupin cyclides. They were discovered c. 1802 by Charles Dupin, while he was still a student at the École polytechnique following Gaspard Monge's lectures. The key property of a Dupin cyclide is that it is a channel surface in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry.

In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time. Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance, has an orbit that is a conic section with the central body located at one of the two foci, or the focus.

<span class="mw-page-title-main">Focus (geometry)</span> Geometric point from which certain types of curves are constructed

In geometry, focuses or foci are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola. In addition, two foci are used to define the Cassini oval and the Cartesian oval, and more than two foci are used in defining an n-ellipse.

<span class="mw-page-title-main">Universal parabolic constant</span> Mathematical constant in conic sections

The universal parabolic constant is a mathematical constant.

<span class="mw-page-title-main">Steiner inellipse</span> Unique ellipse tangent to all 3 midpoints of a given triangles sides

In geometry, the Steiner inellipse, midpoint inellipse, or midpoint ellipse of a triangle is the unique ellipse inscribed in the triangle and tangent to the sides at their midpoints. It is an example of an inellipse. By comparison the inscribed circle and Mandart inellipse of a triangle are other inconics that are tangent to the sides, but not at the midpoints unless the triangle is equilateral. The Steiner inellipse is attributed by Dörrie to Jakob Steiner, and a proof of its uniqueness is given by Dan Kalman.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous, targeting, guidance, and preliminary orbit determination.

<span class="mw-page-title-main">Semi-major and semi-minor axes</span> Term in geometry; longest and shortest semidiameters of an ellipse

In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle.

<span class="mw-page-title-main">Director circle</span> Circle formed by all 90° crossings of tangents of an ellipse or hyperbola

In geometry, the director circle of an ellipse or hyperbola is a circle consisting of all points where two perpendicular tangent lines to the ellipse or hyperbola cross each other.

In mathematics, a generalized conic is a geometrical object defined by a property which is a generalization of some defining property of the classical conic. For example, in elementary geometry, an ellipse can be defined as the locus of a point which moves in a plane such that the sum of its distances from two fixed points – the foci – in the plane is a constant. The curve obtained when the set of two fixed points is replaced by an arbitrary, but fixed, finite set of points in the plane is called an n–ellipse and can be thought of as a generalized ellipse. Since an ellipse is the equidistant set of two circles, where one circle is inside the other, the equidistant set of two arbitrary sets of points in a plane can be viewed as a generalized conic. In rectangular Cartesian coordinates, the equation y = x2 represents a parabola. The generalized equation y = xr, for r ≠ 0 and r ≠ 1, can be treated as defining a generalized parabola. The idea of generalized conic has found applications in approximation theory and optimization theory.

<span class="mw-page-title-main">Confocal conic sections</span> Conic sections with the same foci

In geometry, two conic sections are called confocal if they have the same foci.

<span class="mw-page-title-main">Focal conics</span> Pairs of conic sections in geometry

In geometry, focal conics are a pair of curves consisting of either

In triangle geometry, the Kiepert conics are two special conics associated with the reference triangle. One of them is a hyperbola, called the Kiepert hyperbola and the other is a parabola, called the Kiepert parabola. The Kiepert conics are defined as follows:

References

  1. Thomas, George B.; Finney, Ross L. (1979), Calculus and Analytic Geometry (fifth ed.), Addison-Wesley, p. 434. ISBN   0-201-07540-7
  2. Ayoub, Ayoub B., "The eccentricity of a conic section", The College Mathematics Journal 34(2), March 2003, 116-121.
  3. "Classification of Linear PDEs in Two Independent Variables" . Retrieved 2 July 2013.