In mathematics, an elliptic partial differential equation is a type of partial differential equation (PDE). In mathematical modeling, elliptic PDEs are frequently used to model steady states, unlike parabolic PDE and hyperbolic PDE which generally model phenomena that change in time. They are also important in pure mathematics, where they are fundamental to various fields of research such as differential geometry and optimal transport.
Elliptic differential equations appear in many different contexts and levels of generality.
First consider a second-order linear PDE in two variables, written in the form where A, B, C, D, E, F, and G are functions of x and y, using subscript notation for the partial derivatives. The PDE is called elliptic if with this naming convention inspired by the equation for a planar ellipse. Equations with are termed parabolic while those with are hyperbolic.
For a general linear second-order PDE, the "unknown" function u can be a function of any number x1, ..., xn of independent variables; the equation is of the form where ai,j, bi, c and f are functions defined on the domain subject to the symmetry ai,j = aj,i. This equation is called elliptic if, when a is viewed as a function on the domain valued in the space of n × n symmetric matrices, all of the eigenvalues are greater than some set positive number. Equivalently, this means that there is a positive number θ such that for any point x1, ..., xn in the domain and any real numbers ξ1, ..., ξn. [1] [2]
The simplest example of a second-order linear elliptic PDE is the Laplace equation, in which ai,j is zero if i ≠ j and is one otherwise, and where bi = c = f = 0. The Poisson equation is a slightly more general second-order linear elliptic PDE, in which f is not required to vanish. For both of these equations, the ellipticity constant θ can be taken to be 1.
The terminology elliptic partial differential equation is not used consistently throughout the literature. What is called "elliptic" by some authors is called strictly elliptic or uniformly elliptic by others. [3]
Ellipticity can also be formulated for much more general classes of equations. For the most general second-order PDE, which is of the form
for some given function F, ellipticity is defined by linearizing the equation and applying the above linear definition. Since linearization is done at a particular function u, this means that ellipticity of a nonlinear second-order PDE depends not only on the equation itself but also on the solutions under consideration. For example, in the simplest kind of Monge–Ampère equation, the determinant of the hessian matrix of a function is prescribed:
As follows from Jacobi's formula for the derivative of a determinant, this equation is elliptic if f is a positive function and solutions satisfy the constraint of being uniformly convex. [4]
There are also higher-order elliptic PDE, the simplest example being the fourth-order biharmonic equation. [5] Even more generally, there is an important class of elliptic systems which consist of coupled partial differential equations for multiple 'unknown' functions. [6] For example, the Cauchy–Riemann equations from complex analysis can be viewed as a first-order elliptic system for a pair of two-variable functions. [7]
Moreover, the class of elliptic PDE (of any order, including systems) is subject to various notions of weak solutions, i.e., reformulating the above equations in such a way that allows for solutions to have various irregularities (e.g. non-differentiability, singularities or discontinuities) while still adhering to the laws of physics. [8] Additionally, these type of solutions are also important in variational calculus, where the direct method often produces weak solutions of elliptic systems of Euler equations. [9]
Consider a second-order elliptic partial differential equation
for a two-variable function u = u(x, y). This equation is linear in the "leading-order terms" but allows nonlinear expressions involving the function values and their first derivatives; this is sometimes called a quasilinear equation.
A canonical form asks for a transformation w = w(x, y) and z = z(x, y) of the domain so that, when u is viewed as a function of w and z, the above equation takes the form
for some new function F. The existence of such a transformation can be established locally if A, B, and C are real-analytic functions and, with more elaborate work, even if they are only continuously differentiable. Locality means that the necessary coordinate transformations may fail to be defined on the entire domain of u, although they can be established in some small region surrounding any particular point of the domain. [10]
Formally establishing the existence of such transformations uses the existence of solutions to the Beltrami equation. From the perspective of differential geometry, the existence of a canonical form is equivalent to the existence of isothermal coordinates for the associated Riemannian metric
on the domain. (The ellipticity condition for the PDE, namely the positivity of the function AC – B2, is what ensures that either this tensor or its negation is indeed a Riemannian metric.) Generally, for second-order quasilinear elliptic partial differential equations for functions of more than two variables, a canonical form does not exist. This corresponds to the fact that, although isothermal coordinates generally exist for Riemannian metrics in two dimensions, they only exist for very particular Riemannian metrics in higher dimensions. [11]
For the general second-order linear PDE, characteristics are defined as the null directions for the associated tensor [12]
called the principal symbol. Using the technology of the wave front set, characteristics are significant in understanding how irregular points of f propagate to the solution u of the PDE. Informally, the wave front set of a function consists of the points of non-smoothness, in addition to the directions in frequency space causing the lack of smoothness. It is a fundamental fact that the application of a linear differential operator with smooth coefficients can only have the effect of removing points from the wave front set. [13] However, all points of the original wave front set (and possibly more) are recovered by adding back in the (real) characteristic directions of the operator. [14]
In the case of a linear elliptic operator P with smooth coefficients, the principal symbol is a Riemannian metric and there are no real characteristic directions. According to the previous paragraph, it follows that the wave front set of a solution u coincides exactly with that of Pu = f. This sets up a basic regularity theorem, which says that if f is smooth (so that its wave front set is empty) then the solution u is smooth as well. More generally, the points where u fails to be smooth coincide with the points where f is not smooth. [15] This regularity phenomena is in sharp contrast with, for example, hyperbolic PDE in which discontinuities can form even when all the coefficients of an equation are smooth.
Solutions of elliptic PDEs are naturally associated with time-independent solutions of parabolic PDEs or hyperbolic PDEs. For example, a time-independent solution of the heat equation solves Laplace's equation. That is, if parabolic and hyperbolic PDEs are associated with modeling dynamical systems then the solutions of elliptic PDEs are associated with steady states. Informally, this is reflective of the above regularity theorem, as steady states are generally smoothed out versions of truly dynamical solutions. However, PDE used in modeling are often nonlinear and the above regularity theorem only applies to linear elliptic equations; moreover, the regularity theory for nonlinear elliptic equations is much more subtle, with solutions not always being smooth.
The Nash embedding theorems, named after John Forbes Nash Jr., state that every Riemannian manifold can be isometrically embedded into some Euclidean space. Isometric means preserving the length of every path. For instance, bending but neither stretching nor tearing a page of paper gives an isometric embedding of the page into Euclidean space because curves drawn on the page retain the same arclength however the page is bent.
In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function.
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.
In mathematics, the homotopy principle is a very general way to solve partial differential equations (PDEs), and more generally partial differential relations (PDRs). The h-principle is good for underdetermined PDEs or PDRs, such as the immersion problem, isometric immersion problem, fluid dynamics, and other areas.
In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real characteristic directions.
In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation. The method is to reduce a partial differential equation (PDE) to a family of ordinary differential equations (ODE) along which the solution can be integrated from some initial data given on a suitable hypersurface.
In mathematical analysis a pseudo-differential operator is an extension of the concept of differential operator. Pseudo-differential operators are used extensively in the theory of partial differential equations and quantum field theory, e.g. in mathematical models that include ultrametric pseudo-differential equations in a non-Archimedean space.
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.
In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface. Many of the equations of mechanics are hyperbolic, and so the study of hyperbolic equations is of substantial contemporary interest. The model hyperbolic equation is the wave equation. In one spatial dimension, this is The equation has the property that, if u and its first time derivative are arbitrarily specified initial data on the line t = 0, then there exists a solution for all time t.
In the mathematical field of analysis, the Nash–Moser theorem, discovered by mathematician John Forbes Nash and named for him and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to settings when the required solution mapping for the linearized problem is not bounded.
Hilbert's nineteenth problem is one of the 23 Hilbert problems, set out in a list compiled by David Hilbert in 1900. It asks whether the solutions of regular problems in the calculus of variations are always analytic. Informally, and perhaps less directly, since Hilbert's concept of a "regular variational problem" identifies this precisely as a variational problem whose Euler–Lagrange equation is an elliptic partial differential equation with analytic coefficients, Hilbert's nineteenth problem, despite its seemingly technical statement, simply asks whether, in this class of partial differential equations, any solution inherits the relatively simple and well understood property of being an analytic function from the equation it satisfies. Hilbert's nineteenth problem was solved independently in the late 1950s by Ennio De Giorgi and John Forbes Nash, Jr.
In mathematics, Harnack's inequality is an inequality relating the values of a positive harmonic function at two points, introduced by A. Harnack. Harnack's inequality is used to prove Harnack's theorem about the convergence of sequences of harmonic functions. J. Serrin, and J. Moser generalized Harnack's inequality to solutions of elliptic or parabolic partial differential equations. Such results can be used to show the interior regularity of weak solutions.
In mathematics, a (real) Monge–Ampère equation is a nonlinear second-order partial differential equation of special kind. A second-order equation for the unknown function u of two variables x,y is of Monge–Ampère type if it is linear in the determinant of the Hessian matrix of u and in the second-order partial derivatives of u. The independent variables (x,y) vary over a given domain D of R2. The term also applies to analogous equations with n independent variables. The most complete results so far have been obtained when the equation is elliptic.
A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena in, i.a., engineering science, quantum mechanics and financial mathematics. Examples include the heat equation, time-dependent Schrödinger equation and the Black–Scholes equation.
In mathematics, specifically in differential geometry, isothermal coordinates on a Riemannian manifold are local coordinates where the metric is conformal to the Euclidean metric. This means that in isothermal coordinates, the Riemannian metric locally has the form
In mathematics, Hörmander's condition is a property of vector fields that, if satisfied, has many useful consequences in the theory of partial and stochastic differential equations. The condition is named after the Swedish mathematician Lars Hörmander.
In mathematics, and specifically the field of partial differential equations (PDEs), a parametrix is an approximation to a fundamental solution of a PDE, and is essentially an approximate inverse to a differential operator.
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown(s) consists of one function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equations (PDEs) which may be with respect to more than one independent variable, and, less commonly, in contrast with stochastic differential equations (SDEs) where the progression is random.
In mathematics, the Cauchy–Kovalevskaya theorem is the main local existence and uniqueness theorem for analytic partial differential equations associated with Cauchy initial value problems. A special case was proven by Augustin Cauchy, and the full result by Sofya Kovalevskaya.
In mathematics, a system of differential equations is a finite set of differential equations. Such a system can be either linear or non-linear. Also, such a system can be either a system of ordinary differential equations or a system of partial differential equations.
{{cite book}}
: CS1 maint: multiple names: authors list (link)