Elliptic partial differential equation

Last updated

Second-order linear partial differential equations (PDEs) are classified as either elliptic, hyperbolic, or parabolic. Any second-order linear PDE in two variables can be written in the form

Contents

where A, B, C, D, E, F, and G are functions of x and y and where , and similarly for . A PDE written in this form is elliptic if

with this naming convention inspired by the equation for a planar ellipse.

The simplest examples of elliptic PDE's are the Laplace equation, , and the Poisson equation, In a sense, any other elliptic PDE in two variables can be considered to be a generalization of one of these equations, as it can always be put into the canonical form

through a change of variables. [1] [2]

Qualitative behavior

Elliptic equations have no real characteristic curves, curves along which it is not possible to eliminate at least one second derivative of from the conditions of the Cauchy problem. [1] Since characteristic curves are the only curves along which solutions to partial differential equations with smooth parameters can have discontinuous derivatives, solutions to elliptic equations cannot have discontinuous derivatives anywhere. This means elliptic equations are well suited to describe equilibrium states, where any discontinuities have already been smoothed out. For instance, we can obtain Laplace's equation from the heat equation by setting . This means that Laplace's equation describes a steady state of the heat equation. [2]

In parabolic and hyperbolic equations, characteristics describe lines along which information about the initial data travels. Since elliptic equations have no real characteristic curves, there is no meaningful sense of information propagation for elliptic equations. This makes elliptic equations better suited to describe static, rather than dynamic, processes. [2]

Derivation of canonical form

We derive the canonical form for elliptic equations in two variables, .

and .

If , applying the chain rule once gives

and ,

a second application gives

and

We can replace our PDE in x and y with an equivalent equation in and

where

and

To transform our PDE into the desired canonical form, we seek and such that and . This gives us the system of equations

Adding times the second equation to the first and setting gives the quadratic equation

Since the discriminant , this equation has two distinct solutions,

which are complex conjugates. Choosing either solution, we can solve for , and recover and with the transformations and . Since and will satisfy and , so with a change of variables from x and y to and will transform the PDE

into the canonical form

as desired.

In higher dimensions

A general second-order partial differential equation in n variables takes the form

This equation is considered elliptic if there are no characteristic surfaces, i.e. surfaces along which it is not possible to eliminate at least one second derivative of u from the conditions of the Cauchy problem. [1]

Unlike the two-dimensional case, this equation cannot in general be reduced to a simple canonical form. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Wave equation</span> Differential equation important in physics

The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields – as they occur in classical physics – such as mechanical waves or electromagnetic waves. It arises in fields like acoustics, electromagnetism, and fluid dynamics. Single mechanical or electromagnetic waves propagating in a pre-defined direction can also be described with the first-order one-way wave equation, which is much easier to solve and also valid for inhomogeneous media.

<span class="mw-page-title-main">Partial differential equation</span> Type of differential equation

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In mathematics, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form:

<span class="mw-page-title-main">Elliptic operator</span> Type of differential operator

In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real characteristic directions.

Burgers' equation or Bateman–Burgers equation is a fundamental partial differential equation and convection–diffusion equation occurring in various areas of applied mathematics, such as fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. The equation was first introduced by Harry Bateman in 1915 and later studied by Johannes Martinus Burgers in 1948.

In mathematics, constraint counting is counting the number of constraints in order to compare it with the number of variables, parameters, etc. that are free to be determined, the idea being that in most cases the number of independent choices that can be made is the excess of the latter over the former.

<span class="mw-page-title-main">Mesh generation</span> Subdivision of space into cells

Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI, depending on the complexity of the domain and the type of mesh desired. A typical goal is to create a mesh that accurately captures the input domain geometry, with high-quality (well-shaped) cells, and without so many cells as to make subsequent calculations intractable. The mesh should also be fine in areas that are important for the subsequent calculations.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

In mathematics, and specifically partial differential equations, d´Alembert's formula is the general solution to the one-dimensional wave equation:

A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena, including heat conduction, particle diffusion, and pricing of derivative investment instruments.

In classical mechanics, a Liouville dynamical system is an exactly solvable dynamical system in which the kinetic energy T and potential energy V can be expressed in terms of the s generalized coordinates q as follows:

The prolate spheroidal wave functions are eigenfunctions of the Laplacian in prolate spheroidal coordinates, adapted to boundary conditions on certain ellipsoids of revolution. Related are the oblate spheroidal wave functions.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

<span class="mw-page-title-main">Pole and polar</span>

In geometry, a pole and polar are respectively a point and a line that have a unique reciprocal relationship with respect to a given conic section.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

In mathematics, and more precisely, in functional Analysis and PDEs, the Schauder estimates are a collection of results due to Juliusz Schauder concerning the regularity of solutions to linear, uniformly elliptic partial differential equations. The estimates say that when the equation has appropriately smooth terms and appropriately smooth solutions, then the Hölder norm of the solution can be controlled in terms of the Hölder norms for the coefficient and source terms. Since these estimates assume by hypothesis the existence of a solution, they are called a priori estimates.

In applied mathematics, oblate spheroidal wave functions are involved in the solution of the Helmholtz equation in oblate spheroidal coordinates. When solving this equation, , by the method of separation of variables, , with:

In the study of differential equations, the Loewy decomposition breaks every linear ordinary differential equation (ODE) into what are called largest completely reducible components. It was introduced by Alfred Loewy.

References

  1. 1 2 3 Pinchover, Yehuda; Rubinstein, Jacob (2005). An Introduction to Partial Differential Equations. Cambridge: Cambridge University Press. ISBN   978-0-521-84886-2.
  2. 1 2 3 4 Zauderer, Erich (1989). Partial Differential Equations of Applied Mathematics. New York: John Wiley&Sons. ISBN   0-471-61298-7.