Isothermal coordinates

Last updated

In mathematics, specifically in differential geometry, isothermal coordinates on a Riemannian manifold are local coordinates where the metric is conformal to the Euclidean metric. This means that in isothermal coordinates, the Riemannian metric locally has the form

Contents

where is a positive smooth function. (If the Riemannian manifold is oriented, some authors insist that a coordinate system must agree with that orientation to be isothermal.)

Isothermal coordinates on surfaces were first introduced by Gauss. Korn and Lichtenstein proved that isothermal coordinates exist around any point on a two dimensional Riemannian manifold.

By contrast, most higher-dimensional manifolds do not admit isothermal coordinates anywhere; that is, they are not usually locally conformally flat. In dimension 3, a Riemannian metric is locally conformally flat if and only if its Cotton tensor vanishes. In dimensions > 3, a metric is locally conformally flat if and only if its Weyl tensor vanishes.

Isothermal coordinates on surfaces

In 1822, Carl Friedrich Gauss proved the existence of isothermal coordinates on an arbitrary surface with a real-analytic Riemannian metric, following earlier results of Joseph Lagrange in the special case of surfaces of revolution. [1] The construction used by Gauss made use of the Cauchy–Kowalevski theorem, so that his method is fundamentally restricted to the real-analytic context. [2] Following innovations in the theory of two-dimensional partial differential equations by Arthur Korn, Leon Lichtenstein found in 1916 the general existence of isothermal coordinates for Riemannian metrics of lower regularity, including smooth metrics and even Hölder continuous metrics. [3]

Given a Riemannian metric on a two-dimensional manifold, the transition function between isothermal coordinate charts, which is a map between open subsets of R2, is necessarily angle-preserving. The angle-preserving property together with orientation-preservation is one characterization (among many) of holomorphic functions, and so an oriented coordinate atlas consisting of isothermal coordinate charts may be viewed as a holomorphic coordinate atlas. This demonstrates that a Riemannian metric and an orientation on a two-dimensional manifold combine to induce the structure of a Riemann surface (i.e. a one-dimensional complex manifold). Furthermore, given an oriented surface, two Riemannian metrics induce the same holomorphic atlas if and only if they are conformal to one another. For this reason, the study of Riemann surfaces is identical to the study of conformal classes of Riemannian metrics on oriented surfaces.

By the 1950s, expositions of the ideas of Korn and Lichtenstein were put into the language of complex derivatives and the Beltrami equation by Lipman Bers and Shiing-shen Chern, among others. [4] In this context, it is natural to investigate the existence of generalized solutions, which satisfy the relevant partial differential equations but are no longer interpretable as coordinate charts in the usual way. This was initiated by Charles Morrey in his seminal 1938 article on the theory of elliptic partial differential equations on two-dimensional domains, leading later to the measurable Riemann mapping theorem of Lars Ahlfors and Bers. [5]

Beltrami equation

The existence of isothermal coordinates can be proved [6] by applying known existence theorems for the Beltrami equation, which rely on Lp estimates for singular integral operators of Calderón and Zygmund. [7] [8] A simpler approach to the Beltrami equation has been given more recently by Adrien Douady. [9]

If the Riemannian metric is given locally as

then in the complex coordinate , it takes the form

where and are smooth with and . In fact

In isothermal coordinates the metric should take the form

with ρ smooth. The complex coordinate satisfies

so that the coordinates (u, v) will be isothermal if the Beltrami equation

has a diffeomorphic solution. Such a solution has been proved to exist in any neighbourhood where .

Existence via local solvability for elliptic partial differential equations

The existence of isothermal coordinates on a smooth two-dimensional Riemannian manifold is a corollary of the standard local solvability result in the analysis of elliptic partial differential equations. In the present context, the relevant elliptic equation is the condition for a function to be harmonic relative to the Riemannian metric. The local solvability then states that any point p has a neighborhood U on which there is a harmonic function u with nowhere-vanishing derivative. [10]

Isothermal coordinates are constructed from such a function in the following way. [11] Harmonicity of u is identical to the closedness of the differential 1-form defined using the Hodge star operator associated to the Riemannian metric. The Poincaré lemma thus implies the existence of a function v on U with By definition of the Hodge star, and are orthogonal to one another and hence linearly independent, and it then follows from the inverse function theorem that u and v form a coordinate system on some neighborhood of p. This coordinate system is automatically isothermal, since the orthogonality of and implies the diagonality of the metric, and the norm-preserving property of the Hodge star implies the equality of the two diagonal components.

Gaussian curvature

In the isothermal coordinates , the Gaussian curvature takes the simpler form

See also

Notes

  1. Gauss 1825; Lagrange 1779.
  2. Spivak 1999, Theorem 9.18.
  3. Korn 1914; Lichtenstein 1916; Spivak 1999, Addendum 1 to Chapter 9; Taylor 2000, Proposition 3.9.3.
  4. Bers 1958; Chern 1955; Ahlfors 2006, p. 90.
  5. Morrey 1938.
  6. Imayoshi & Taniguchi 1992 , pp. 20–21
  7. Ahlfors 2006 , pp. 85–115
  8. Imayoshi & Taniguchi 1992 , pp. 92–104
  9. Douady & Buff 2000
  10. Taylor 2011 , pp. 440–441; Bers, John & Schechter 1979 , pp. 228–230
  11. DeTurck & Kazdan 1981

Related Research Articles

<span class="mw-page-title-main">Differential geometry</span> Branch of mathematics dealing with functions and geometric structures on differentiable manifolds

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries.

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In the mathematical field of Riemannian geometry, the scalar curvature is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.

In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces.

In mathematics, conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space.

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In mathematics, the Teichmüller space of a (real) topological surface is a space that parametrizes complex structures on up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Teichmüller spaces are named after Oswald Teichmüller.

In mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form

In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

In mathematical complex analysis, a quasiconformal mapping, introduced by Grötzsch (1928) and named by Ahlfors (1935), is a homeomorphism between plane domains which to first order takes small circles to small ellipses of bounded eccentricity.

In differential geometry, a Kähler–Einstein metric on a complex manifold is a Riemannian metric that is both a Kähler metric and an Einstein metric. A manifold is said to be Kähler–Einstein if it admits a Kähler–Einstein metric. The most important special case of these are the Calabi–Yau manifolds, which are Kähler and Ricci-flat.

In differential geometry, Liouville's equation, named after Joseph Liouville, is the nonlinear partial differential equation satisfied by the conformal factor f of a metric f2(dx2 + dy2) on a surface of constant Gaussian curvature K:

<span class="mw-page-title-main">Differential geometry of surfaces</span> The mathematics of smooth surfaces

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.

In mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation

Ahlfors theory is a mathematical theory invented by Lars Ahlfors as a geometric counterpart of the Nevanlinna theory. Ahlfors was awarded one of the two very first Fields Medals for this theory in 1936.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References