Part of a series of articles about |
Quantum mechanics |
---|
Spontaneous emission is the process in which a quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited energy state to a lower energy state (e.g., its ground state) and emits a quantized amount of energy in the form of a photon. Spontaneous emission is ultimately responsible for most of the light we see all around us; it is so ubiquitous that there are many names given to what is essentially the same process. If atoms (or molecules) are excited by some means other than heating, the spontaneous emission is called luminescence. For example, fireflies are luminescent. And there are different forms of luminescence depending on how excited atoms are produced (electroluminescence, chemiluminescence etc.). If the excitation is effected by the absorption of radiation the spontaneous emission is called fluorescence. Sometimes molecules have a metastable level and continue to fluoresce long after the exciting radiation is turned off; this is called phosphorescence. Figurines that glow in the dark are phosphorescent. Lasers start via spontaneous emission, then during continuous operation work by stimulated emission.
Spontaneous emission cannot be explained by classical electromagnetic theory and is fundamentally a quantum process. The first person to correctly predict the phenomenon of spontaneous emission was Albert Einstein in a series of papers starting in 1916, culminating in what is now called the Einstein A Coefficient. [1] [2] Einstein's quantum theory of radiation anticipated ideas later expressed in quantum electrodynamics and quantum optics by several decades. [3] Later, after the formal discovery of quantum mechanics in 1926, the rate of spontaneous emission was accurately described from first principles by Dirac in his quantum theory of radiation, [4] the precursor to the theory which he later called quantum electrodynamics. [5] Contemporary physicists, when asked to give a physical explanation for spontaneous emission, generally invoke the zero-point energy of the electromagnetic field. [6] [7] In 1963, the Jaynes–Cummings model [8] was developed describing the system of a two-level atom interacting with a quantized field mode (i.e. the vacuum) within an optical cavity. It gave the nonintuitive prediction that the rate of spontaneous emission could be controlled depending on the boundary conditions of the surrounding vacuum field. These experiments gave rise to cavity quantum electrodynamics (CQED), the study of effects of mirrors and cavities on radiative corrections.
If a light source ('the atom') is in an excited state with energy , it may spontaneously decay to a lower lying level (e.g., the ground state) with energy , releasing the difference in energy between the two states as a photon. The photon will have angular frequency and an energy :
where is the reduced Planck constant. Note: , where is the Planck constant and is the linear frequency. The phase of the photon in spontaneous emission is random as is the direction in which the photon propagates. This is not true for stimulated emission. An energy level diagram illustrating the process of spontaneous emission is shown below:
If the number of light sources in the excited state at time is given by , the rate at which decays is:
where is the rate of spontaneous emission. In the rate-equation is a proportionality constant for this particular transition in this particular light source. The constant is referred to as the Einstein A coefficient , and has units s−1. [9] The above equation can be solved to give:
where is the initial number of light sources in the excited state, is the time and is the radiative decay rate of the transition. The number of excited states thus decays exponentially with time, similar to radioactive decay. After one lifetime, the number of excited states decays to 36.8% of its original value (-time). The radiative decay rate is inversely proportional to the lifetime :
Spontaneous transitions were not explainable within the framework of the Schrödinger equation, in which the electronic energy levels were quantized, but the electromagnetic field was not. Given that the eigenstates of an atom are properly diagonalized, the overlap of the wavefunctions between the excited state and the ground state of the atom is zero. Thus, in the absence of a quantized electromagnetic field, the excited state atom cannot decay to the ground state. In order to explain spontaneous transitions, quantum mechanics must be extended to a quantum field theory, wherein the electromagnetic field is quantized at every point in space. The quantum field theory of electrons and electromagnetic fields is known as quantum electrodynamics.
In quantum electrodynamics (or QED), the electromagnetic field has a ground state, the QED vacuum, which can mix with the excited stationary states of the atom. [5] As a result of this interaction, the "stationary state" of the atom is no longer a true eigenstate of the combined system of the atom plus electromagnetic field. In particular, the electron transition from the excited state to the electronic ground state mixes with the transition of the electromagnetic field from the ground state to an excited state, a field state with one photon in it. Spontaneous emission in free space depends upon vacuum fluctuations to get started. [10] [11]
Although there is only one electronic transition from the excited state to ground state, there are many ways in which the electromagnetic field may go from the ground state to a one-photon state. That is, the electromagnetic field has infinitely more degrees of freedom, corresponding to the different directions in which the photon can be emitted. Equivalently, one might say that the phase space offered by the electromagnetic field is infinitely larger than that offered by the atom. This infinite degree of freedom for the emission of the photon results in the apparent irreversible decay, i.e., spontaneous emission.
In the presence of electromagnetic vacuum modes, the combined atom-vacuum system is explained by the superposition of the wavefunctions of the excited state atom with no photon and the ground state atom with a single emitted photon:
where and are the atomic excited state-electromagnetic vacuum wavefunction and its probability amplitude, and are the ground state atom with a single photon (of mode ) wavefunction and its probability amplitude, is the atomic transition frequency, and is the frequency of the photon. The sum is over and , which are the wavenumber and polarization of the emitted photon, respectively. As mentioned above, the emitted photon has a chance to be emitted with different wavenumbers and polarizations, and the resulting wavefunction is a superposition of these possibilities. To calculate the probability of the atom at the ground state (), one needs to solve the time evolution of the wavefunction with an appropriate Hamiltonian. [4] To solve for the transition amplitude, one needs to average over (integrate over) all the vacuum modes, since one must consider the probabilities that the emitted photon occupies various parts of phase space equally. The "spontaneously" emitted photon has infinite different modes to propagate into, thus the probability of the atom re-absorbing the photon and returning to the original state is negligible, making the atomic decay practically irreversible. Such irreversible time evolution of the atom-vacuum system is responsible for the apparent spontaneous decay of an excited atom. If one were to keep track of all the vacuum modes, the combined atom-vacuum system would undergo unitary time evolution, making the decay process reversible. Cavity quantum electrodynamics is one such system where the vacuum modes are modified resulting in the reversible decay process, see also Quantum revival. The theory of the spontaneous emission under the QED framework was first calculated by Victor Weisskopf and Eugene Wigner in 1930 in a landmark paper. [12] [13] [14] The Weisskopf-Wigner calculation remains the standard approach to spontaneous radiation emission in atomic and molecular physics. [15] Dirac had also developed the same calculation a couple of years prior to the paper by Wigner and Weisskopf. [16]
The rate of spontaneous emission (i.e., the radiative rate) can be described by Fermi's golden rule. [17] The rate of emission depends on two factors: an 'atomic part', which describes the internal structure of the light source and a 'field part', which describes the density of electromagnetic modes of the environment. The atomic part describes the strength of a transition between two states in terms of transition moments. In a homogeneous medium, such as free space, the rate of spontaneous emission in the dipole approximation is given by:
where is the emission frequency, is the index of refraction, is the transition dipole moment, is the vacuum permittivity, is the reduced Planck constant, is the vacuum speed of light, and is the fine-structure constant. The expression stands for the definition of the transition dipole moment for dipole moment operator , where is the elementary charge and stands for position operator. (This approximation breaks down in the case of inner shell electrons in high-Z atoms.) The above equation clearly shows that the rate of spontaneous emission in free space increases proportionally to .
In contrast with atoms, which have a discrete emission spectrum, quantum dots can be tuned continuously by changing their size. This property has been used to check the -frequency dependence of the spontaneous emission rate as described by Fermi's golden rule. [18]
In the rate-equation above, it is assumed that decay of the number of excited states only occurs under emission of light. In this case one speaks of full radiative decay and this means that the quantum efficiency is 100%. Besides radiative decay, which occurs under the emission of light, there is a second decay mechanism; nonradiative decay. To determine the total decay rate , radiative and nonradiative rates should be summed:
where is the total decay rate, is the radiative decay rate and the nonradiative decay rate. The quantum efficiency (QE) is defined as the fraction of emission processes in which emission of light is involved:
In nonradiative relaxation, the energy is released as phonons, more commonly known as heat. Nonradiative relaxation occurs when the energy difference between the levels is very small, and these typically occur on a much faster time scale than radiative transitions. For many materials (for instance, semiconductors), electrons move quickly from a high energy level to a meta-stable level via small nonradiative transitions and then make the final move down to the bottom level via an optical or radiative transition. This final transition is the transition over the bandgap in semiconductors. Large nonradiative transitions do not occur frequently because the crystal structure generally cannot support large vibrations without destroying bonds (which generally doesn't happen for relaxation). Meta-stable states form a very important feature that is exploited in the construction of lasers. Specifically, since electrons decay slowly from them, they can be deliberately piled up in this state without too much loss and then stimulated emission can be used to boost an optical signal.
If emission leaves a system in an excited state, additional transitions can occur, leading to atomic radiative cascade. For example, if calcium atoms a low pressure atomic beam are excited by ultraviolet light from their in the 41S0 ground state to the 61P1 state, they can decay in three steps, first to 61S0 then to 41P1 and finally to the ground state. The photons from the second and third transitions have correlated polarizations demonstrating quantum entanglement. [19] These correlations were used by John Clauser [20] : 880 [21] : 592 and Alain Aspect [22] in work that contributed to their 2022 Nobel prize in physics. [23]
Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron, causing it to drop to a lower energy level. The liberated energy transfers to the electromagnetic field, creating a new photon with a frequency, polarization, and direction of travel that are all identical to the photons of the incident wave. This is in contrast to spontaneous emission, which occurs at a characteristic rate for each of the atoms/oscillators in the upper energy state regardless of the external electromagnetic field.
In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state that has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle. The quantum harmonic oscillator arise in the quantum theory of a wide range of physical systems. For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well. The coherent state describes a state in a system for which the ground-state wavepacket is displaced from the origin of the system. This state can be related to classical solutions by a particle oscillating with an amplitude equivalent to the displacement.
In atomic physics, a dark state refers to a state of an atom or molecule that cannot absorb photons. All atoms and molecules are described by quantum states; different states can have different energies and a system can make a transition from one energy level to another by emitting or absorbing one or more photons. However, not all transitions between arbitrary states are allowed. A state that cannot absorb an incident photon is called a dark state. This can occur in experiments using laser light to induce transitions between energy levels, when atoms can spontaneously decay into a state that is not coupled to any other level by the laser light, preventing the atom from absorbing or emitting light from that state.
In quantum physics, Fermi's golden rule is a formula that describes the transition rate from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a weak perturbation. This transition rate is effectively independent of time and is proportional to the strength of the coupling between the initial and final states of the system as well as the density of states. It is also applicable when the final state is discrete, i.e. it is not part of a continuum, if there is some decoherence in the process, like relaxation or collision of the atoms, or like noise in the perturbation, in which case the density of states is replaced by the reciprocal of the decoherence bandwidth.
Resolved sideband cooling is a laser cooling technique allowing cooling of tightly bound atoms and ions beyond the Doppler cooling limit, potentially to their motional ground state. Aside from the curiosity of having a particle at zero point energy, such preparation of a particle in a definite state with high probability (initialization) is an essential part of state manipulation experiments in quantum optics and quantum computing.
In atomic, molecular, and optical physics, the Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. The Einstein A coefficients are related to the rate of spontaneous emission of light, and the Einstein B coefficients are related to the absorption and stimulated emission of light. Throughout this article, "light" refers to any electromagnetic radiation, not necessarily in the visible spectrum.
Quantum noise is noise arising from the indeterminate state of matter in accordance with fundamental principles of quantum mechanics, specifically the uncertainty principle and via zero-point energy fluctuations. Quantum noise is due to the apparently discrete nature of the small quantum constituents such as electrons, as well as the discrete nature of quantum effects, such as photocurrents.
The Kramers–Heisenberg dispersion formula is an expression for the cross section for scattering of a photon by an atomic electron. It was derived before the advent of quantum mechanics by Hendrik Kramers and Werner Heisenberg in 1925, based on the correspondence principle applied to the classical dispersion formula for light. The quantum mechanical derivation was given by Paul Dirac in 1927.
In spectroscopy, the Autler–Townes effect, is a dynamical Stark effect corresponding to the case when an oscillating electric field is tuned in resonance to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.
Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom.
A vacuum Rabi oscillation is a damped oscillation of an initially excited atom coupled to an electromagnetic resonator or cavity in which the atom alternately emits photon(s) into a single-mode electromagnetic cavity and reabsorbs them. The atom interacts with a single-mode field confined to a limited volume V in an optical cavity. Spontaneous emission is a consequence of coupling between the atom and the vacuum fluctuations of the cavity field.
Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their photoabsorption by detecting in the intensity of Auger electrons as a function of the incident photon energy. Surface sensitivity is achieved by the interpretation of data depending on the intensity of the Auger electrons instead of looking at the relative absorption of the X-rays as in the parent method, EXAFS.
An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.
Circuit quantum electrodynamics provides a means of studying the fundamental interaction between light and matter. As in the field of cavity quantum electrodynamics, a single photon within a single mode cavity coherently couples to a quantum object (atom). In contrast to cavity QED, the photon is stored in a one-dimensional on-chip resonator and the quantum object is no natural atom but an artificial one. These artificial atoms usually are mesoscopic devices which exhibit an atom-like energy spectrum. The field of circuit QED is a prominent example for quantum information processing and a promising candidate for future quantum computation.
The Elliott formula describes analytically, or with few adjustable parameters such as the dephasing constant, the light absorption or emission spectra of solids. It was originally derived by Roger James Elliott to describe linear absorption based on properties of a single electron–hole pair. The analysis can be extended to a many-body investigation with full predictive powers when all parameters are computed microscopically using, e.g., the semiconductor Bloch equations or the semiconductor luminescence equations.
The interaction of matter with light, i.e., electromagnetic fields, is able to generate a coherent superposition of excited quantum states in the material. Coherent denotes the fact that the material excitations have a well defined phase relation which originates from the phase of the incident electromagnetic wave. Macroscopically, the superposition state of the material results in an optical polarization, i.e., a rapidly oscillating dipole density. The optical polarization is a genuine non-equilibrium quantity that decays to zero when the excited system relaxes to its equilibrium state after the electromagnetic pulse is switched off. Due to this decay which is called dephasing, coherent effects are observable only for a certain temporal duration after pulsed photoexcitation. Various materials such as atoms, molecules, metals, insulators, semiconductors are studied using coherent optical spectroscopy and such experiments and their theoretical analysis has revealed a wealth of insights on the involved matter states and their dynamical evolution.
Ramsey interferometry, also known as the separated oscillating fields method, is a form of particle interferometry that uses the phenomenon of magnetic resonance to measure transition frequencies of particles. It was developed in 1949 by Norman Ramsey, who built upon the ideas of his mentor, Isidor Isaac Rabi, who initially developed a technique for measuring particle transition frequencies. Ramsey's method is used today in atomic clocks and in the SI definition of the second. Most precision atomic measurements, such as modern atom interferometers and quantum logic gates, have a Ramsey-type configuration. A more modern method, known as Ramsey–Bordé interferometry uses a Ramsey configuration and was developed by French physicist Christian Bordé and is known as the Ramsey–Bordé interferometer. Bordé's main idea was to use atomic recoil to create a beam splitter of different geometries for an atom-wave. The Ramsey–Bordé interferometer specifically uses two pairs of counter-propagating interaction waves, and another method named the "photon-echo" uses two co-propagating pairs of interaction waves.
In quantum mechanics, magnetic resonance is a resonant effect that can appear when a magnetic dipole is exposed to a static magnetic field and perturbed with another, oscillating electromagnetic field. Due to the static field, the dipole can assume a number of discrete energy eigenstates, depending on the value of its angular momentum (azimuthal) quantum number. The oscillating field can then make the dipole transit between its energy states with a certain probability and at a certain rate. The overall transition probability will depend on the field's frequency and the rate will depend on its amplitude. When the frequency of that field leads to the maximum possible transition probability between two states, a magnetic resonance has been achieved. In that case, the energy of the photons composing the oscillating field matches the energy difference between said states. If the dipole is tickled with a field oscillating far from resonance, it is unlikely to transition. That is analogous to other resonant effects, such as with the forced harmonic oscillator. The periodic transition between the different states is called Rabi cycle and the rate at which that happens is called Rabi frequency. The Rabi frequency should not be confused with the field's own frequency. Since many atomic nuclei species can behave as a magnetic dipole, this resonance technique is the basis of nuclear magnetic resonance, including nuclear magnetic resonance imaging and nuclear magnetic resonance spectroscopy.
A quantum jump is the abrupt transition of a quantum system from one quantum state to another, from one energy level to another. When the system absorbs energy, there is a transition to a higher energy level (excitation); when the system loses energy, there is a transition to a lower energy level.
In quantum optics, fhe Tavis–Cummings model is a theoretical model to describe an ensemble of identical two-level atoms coupled symmetrically to a single-mode quantized bosonic field. The model extends the Jaynes–Cummings model to larger spin numbers that represent collections of multiple atoms. It differs from the Dicke model in its use of the rotating-wave approximation to conserve the number of excitations of the system.