Atomic beam

Last updated

Atomic beam is special case of particle beam; it is the collimated flux (beam) of neutral atoms. The imaging systems using the slow atomic beams can use the Fresnel zone plate (Fresnel diffraction lens) of a Fresnel diffraction mirror as focusing element. The imaging system with atomic beam could provide the sub-micrometre resolution.

History

In 1911, Louis Dunoyer observed sodium vapor 'rays' in a vacuum chamber. [1] Learning from that experience, Otto Stern worked with Walther Gerlach to produce silver atom beams for their historic Stern–Gerlach experiment, providing the first evidence of atomic scale quantization.

In 1930, Immanuel Estermann and Stern [2] reflected a helium beam from lithium fluoride observing the first atomic matter wave diffraction peaks in the reflected intensity. [3]

Related Research Articles

<span class="mw-page-title-main">Crystallography</span> Scientific study of crystal structures

Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics. The word crystallography is derived from the Ancient Greek word κρύσταλλος, with its meaning extending to all solids with some degree of transparency, and γράφειν. In July 2012, the United Nations recognised the importance of the science of crystallography by proclaiming that 2014 would be the International Year of Crystallography.

<span class="mw-page-title-main">Diffraction</span> Phenomenon of the motion of waves

Diffraction is the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.

Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave.

<span class="mw-page-title-main">Electron diffraction</span> Bending of electron beams due to electrostatic interactions with matter

Electron diffraction refers to changes in the direction of electron beams due to interactions with atoms. Close to the atoms the changes are described as Fresnel diffraction; far away they are called Fraunhofer diffraction. The resulting map of the directions of the electrons far from the sample is called a diffraction pattern, see for instance Figure 1. These patterns are similar to x-ray and neutron diffraction patterns, and are used to study the atomic structure of gases, liquids, surfaces and bulk solids. Electron diffraction also plays a major role in the contrast of images in electron microscopes.

<span class="mw-page-title-main">Otto Stern</span> German-American physicist (1888–1969)

Otto Stern was a German-American physicist and Nobel laureate in physics. He was the second most nominated person for a Nobel Prize, with 82 nominations in the years 1925–1945, ultimately winning in 1943.

<span class="mw-page-title-main">Stern–Gerlach experiment</span> Physical experiment that demonstrated the quantization of angular momentum

The Stern–Gerlach experiment demonstrated that the spatial orientation of angular momentum is quantized. Thus an atomic-scale system was shown to have intrinsically quantum properties. In the original experiment, silver atoms were sent through a spatially varying magnetic field, which deflected them before they struck a detector screen, such as a glass slide. Particles with non-zero magnetic moment are deflected, owing to the magnetic field gradient, from a straight path. The screen reveals discrete points of accumulation, rather than a continuous distribution, owing to their quantized spin. Historically, this experiment was decisive in convincing physicists of the reality of angular-momentum quantization in all atomic-scale systems.

An atom interferometer is an interferometer which uses the wave character of atoms. Similar to optical interferometers, atom interferometers measure the difference in phase between atomic matter waves along different paths. Atom interferometers have many uses in fundamental physics including measurements of the gravitational constant, the fine-structure constant, the universality of free fall, and have been proposed as a method to detect gravitational waves. They also have applied uses as accelerometers, rotation sensors, and gravity gradiometers.

In physics, an atomic mirror is a device which reflects neutral atoms in a way similar to the way a conventional mirror reflects visible light. Atomic mirrors can be made of electric fields or magnetic fields, electromagnetic waves or just silicon wafer; in the last case, atoms are reflected by the attracting tails of the van der Waals attraction. Such reflection is efficient when the normal component of the wavenumber of the atoms is small or comparable to the effective depth of the attraction potential. To reduce the normal component, most atomic mirrors are blazed at the grazing incidence.

In atomic physics, a ridged mirror is a kind of atomic mirror, designed for the specular reflection of neutral particles (atoms) coming at a grazing incidence angle. In order to reduce the mean attraction of particles to the surface and increase the reflectivity, this surface has narrow ridges.

Quantum reflection is a uniquely quantum phenomenon in which an object, such as a neutron or a small molecule, reflects smoothly and in a wavelike fashion from a much larger surface, such as a pool of mercury. A classically behaving neutron or molecule will strike the same surface much like a thrown ball, hitting only at one atomic-scale location where it is either absorbed or scattered. Quantum reflection provides a powerful experimental demonstration of particle-wave duality, since it is the extended quantum wave packet of the particle, rather than the particle itself, that reflects from the larger surface. It is similar to reflection high-energy electron diffraction, where electrons reflect and diffraction from surfaces, and grazing incidence atom scattering, where the fact that atoms can also be waves is used to diffract from surfaces.

Atom optics "refers to techniques to manipulate the trajectories and exploit the wave properties of neutral atoms". Typical experiments employ beams of cold, slowly moving neutral atoms, as a special case of a particle beam. Like an optical beam, the atomic beam may exhibit diffraction and interference, and can be focused with a Fresnel zone plate or a concave atomic mirror.

The history of quantum mechanics is a fundamental part of the history of modern physics. The major chapters of this history begin with the emergence of quantum ideas to explain individual phenomena -- blackbody radiation, the photoelectric effect, solar emission spectra -- an era called the Old or Older quantum theories. The invention of wave mechanics by Schrodinger and expanded by many others triggers the "modern" era beginning around 1925. Dirac's relativistic quantum theory work lead him to explore quantum theories of radiation, culminating in quantum electrodynamics, the first quantum field theory. The history of quantum mechanics continues in the history of quantum field theory. The history of quantum chemistry, theoretical basis of chemical structure, reactivity, and bonding, interlaces with the events discussed in this article.

Helium atom scattering (HAS) is a surface analysis technique used in materials science. It provides information about the surface structure and lattice dynamics of a material by measuring the diffracted atoms from a monochromatic helium beam incident on the sample.

<span class="mw-page-title-main">Talbot effect</span>

The Talbot effect is a diffraction effect first observed in 1836 by Henry Fox Talbot. When a plane wave is incident upon a periodic diffraction grating, the image of the grating is repeated at regular distances away from the grating plane. The regular distance is called the Talbot length, and the repeated images are called self images or Talbot images. Furthermore, at half the Talbot length, a self-image also occurs, but phase-shifted by half a period. At smaller regular fractions of the Talbot length, sub-images can also be observed. At one quarter of the Talbot length, the self-image is halved in size, and appears with half the period of the grating. At one eighth of the Talbot length, the period and size of the images is halved again, and so forth creating a fractal pattern of sub images with ever-decreasing size, often referred to as a Talbot carpet. Talbot cavities are used for coherent beam combination of laser sets.

A molecular beam is produced by allowing a gas at higher pressure to expand through a small orifice into a chamber at lower pressure to form a beam of particles moving at approximately equal velocities, with very few collisions between the particles. Molecular beams are useful for fabricating thin films in molecular beam epitaxy and artificial structures such as quantum wells, quantum wires, and quantum dots. Molecular beams have also been applied as crossed molecular beams. The molecules in the molecular beam can be manipulated by electrical fields and magnetic fields. Molecules can be decelerated in a Stark decelerator or in a Zeeman slower.

A Fresnel imager is a proposed ultra-lightweight design for a space telescope that uses a Fresnel array as primary optics instead of a typical lens. It focuses light with a thin opaque foil sheet punched with specially shaped holes, thus focusing light on a certain point by using the phenomenon of diffraction. Such patterned sheets, called Fresnel zone plates, have long been used for focusing laser beams, but have so far not been used for astronomy. No optical material is involved in the focusing process as in traditional telescopes. Rather, the light collected by the Fresnel array is concentrated on smaller classical optics, to form a final image.

Victor Ivanovich Balykin is a Russian physicist whose main contributions are in the field of atom optics. He and his associates first demonstrated laser cooling of neutral atoms in 1981.

<span class="mw-page-title-main">Scanning helium microscopy</span>

The scanning helium microscope (SHeM) is a novel form of microscopy that uses low-energy (5–100 meV) neutral helium atoms to image the surface of a sample without any damage to the sample caused by the imaging process. Since helium is inert and neutral, it can be used to study delicate and insulating surfaces. Images are formed by rastering a sample underneath an atom beam and monitoring the flux of atoms that are scattered into a detector at each point.

The nucleon magnetic moments are the intrinsic magnetic dipole moments of the proton and neutron, symbols μp and μn. The nucleus of an atom comprises protons and neutrons, both nucleons that behave as small magnets. Their magnetic strengths are measured by their magnetic moments. The nucleons interact with normal matter through either the nuclear force or their magnetic moments, with the charged proton also interacting by the Coulomb force.

Immanuel Estermann was a Jewish German-born nuclear physicist and was professor at Carnegie Mellon University, University of Hamburg and Technion. Estermann is known for his lifelong collaboration with Otto Stern which pioneered the research on molecular beams in the 1920s. With Stern and Otto Robert Frisch, he also first measured the magnetic moment of the proton.

References

  1. Friedrich, Bretislav, and Dudley Herschbach. "Stern and Gerlach: How a bad cigar helped reorient atomic physics." Physics Today 56.12 (2003): 53-59.
  2. Estermann, Immanuel, and Otto Stern. "Beugung von molekularstrahlen." Zeitschrift für Physik 61.1-2 (1930): 95-125.
  3. Cronin, Alexander D.; Jörg Schmiedmayer; David E. Pritchard (2009). "Optics and interferometry with atoms and molecules" (PDF). Reviews of Modern Physics . 81 (3): 1051. arXiv: 0712.3703 . Bibcode:2009RvMP...81.1051C. doi:10.1103/RevModPhys.81.1051. hdl:1721.1/52372. S2CID   28009912. Archived from the original (PDF) on 2011-07-19..