This article includes a list of general references, but it lacks sufficient corresponding inline citations .(December 2024) |
In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the general dynamics of a qubit. An example of classical information is a text document transmitted over the Internet.
Terminologically, quantum channels are completely positive (CP) trace-preserving maps between spaces of operators. In other words, a quantum channel is just a quantum operation viewed not merely as the reduced dynamics of a system but as a pipeline intended to carry quantum information. (Some authors use the term "quantum operation" to include trace-decreasing maps while reserving "quantum channel" for strictly trace-preserving maps. [1] )
We will assume for the moment that all state spaces of the systems considered, classical or quantum, are finite-dimensional.
The memoryless in the section title carries the same meaning as in classical information theory: the output of a channel at a given time depends only upon the corresponding input and not any previous ones.
Consider quantum channels that transmit only quantum information. This is precisely a quantum operation, whose properties we now summarize.
Let and be the state spaces (finite-dimensional Hilbert spaces) of the sending and receiving ends, respectively, of a channel. will denote the family of operators on In the Schrödinger picture, a purely quantum channel is a map between density matrices acting on and with the following properties: [2]
The adjectives completely positive and trace preserving used to describe a map are sometimes abbreviated CPTP. In the literature, sometimes the fourth property is weakened so that is only required to be not trace-increasing. In this article, it will be assumed that all channels are CPTP.
Density matrices acting on HA only constitute a proper subset of the operators on HA and same can be said for system B. However, once a linear map between the density matrices is specified, a standard linearity argument, together with the finite-dimensional assumption, allow us to extend uniquely to the full space of operators. This leads to the adjoint map , which describes the action of in the Heisenberg picture: [3]
The spaces of operators L(HA) and L(HB) are Hilbert spaces with the Hilbert–Schmidt inner product. Therefore, viewing as a map between Hilbert spaces, we obtain its adjoint * given by
While takes states on A to those on B, maps observables on system B to observables on A. This relationship is same as that between the Schrödinger and Heisenberg descriptions of dynamics. The measurement statistics remain unchanged whether the observables are considered fixed while the states undergo operation or vice versa.
It can be directly checked that if is assumed to be trace preserving, is unital, that is,. Physically speaking, this means that, in the Heisenberg picture, the trivial observable remains trivial after applying the channel.
So far we have only defined a quantum channel that transmits only quantum information. As stated in the introduction, the input and output of a channel can include classical information as well. To describe this, the formulation given so far needs to be generalized somewhat. A purely quantum channel, in the Heisenberg picture, is a linear map Ψ between spaces of operators:
that is unital and completely positive (CP). The operator spaces can be viewed as finite-dimensional C*-algebras. Therefore, we can say a channel is a unital CP map between C*-algebras:
Classical information can then be included in this formulation. The observables of a classical system can be assumed to be a commutative C*-algebra, i.e. the space of continuous functions on some set . We assume is finite so can be identified with the n-dimensional Euclidean space with entry-wise multiplication.
Therefore, in the Heisenberg picture, if the classical information is part of, say, the input, we would define to include the relevant classical observables. An example of this would be a channel
Notice is still a C*-algebra. An element of a C*-algebra is called positive if for some . Positivity of a map is defined accordingly. This characterization is not universally accepted; the quantum instrument is sometimes given as the generalized mathematical framework for conveying both quantum and classical information. In axiomatizations of quantum mechanics, the classical information is carried in a Frobenius algebra or Frobenius category.
For a purely quantum system, the time evolution, at certain time t, is given by
where and H is the Hamiltonian and t is the time. This gives a CPTP map in the Schrödinger picture and is therefore a channel. [4] The dual map in the Heisenberg picture is
Consider a composite quantum system with state space For a state
the reduced state of ρ on system A, ρA, is obtained by taking the partial trace of ρ with respect to the B system:
The partial trace operation is a CPTP map, therefore a quantum channel in the Schrödinger picture. [5] In the Heisenberg picture, the dual map of this channel is
where A is an observable of system A.
An observable associates a numerical value to a quantum mechanical effect. 's are assumed to be positive operators acting on appropriate state space and . (Such a collection is called a POVM. [6] [7] ) In the Heisenberg picture, the corresponding observable map maps a classical observable
to the quantum mechanical one
In other words, one integrates f against the POVM to obtain the quantum mechanical observable. It can be easily checked that is CP and unital.
The corresponding Schrödinger map takes density matrices to classical states: [8]
where the inner product is the Hilbert–Schmidt inner product. Furthermore, viewing states as normalized functionals, and invoking the Riesz representation theorem, we can put
The observable map, in the Schrödinger picture, has a purely classical output algebra and therefore only describes measurement statistics. To take the state change into account as well, we define what is called a quantum instrument. Let be the effects (POVM) associated to an observable. In the Schrödinger picture, an instrument is a map with pure quantum input and with output space :
Let
The dual map in the Heisenberg picture is
where is defined in the following way: Factor (this can always be done since elements of a POVM are positive) then . We see that is CP and unital.
Notice that gives precisely the observable map. The map
describes the overall state change.
Suppose two parties A and B wish to communicate in the following manner: A performs the measurement of an observable and communicates the measurement outcome to B classically. According to the message he receives, B prepares his (quantum) system in a specific state. In the Schrödinger picture, the first part of the channel 1 simply consists of A making a measurement, i.e. it is the observable map:
If, in the event of the i-th measurement outcome, B prepares his system in state Ri, the second part of the channel 2 takes the above classical state to the density matrix
The total operation is the composition
Channels of this form are called measure-and-prepare or entanglement-breaking. [9] [10] [11] [12]
In the Heisenberg picture, the dual map is defined by
A measure-and-prepare channel can not be the identity map. This is precisely the statement of the no teleportation theorem, which says classical teleportation (not to be confused with entanglement-assisted teleportation) is impossible. In other words, a quantum state can not be measured reliably.
In the channel-state duality, a channel is measure-and-prepare if and only if the corresponding state is separable. Actually, all the states that result from the partial action of a measure-and-prepare channel are separable, which is why measure-and-prepare channels are also known as entanglement-breaking channels.
Consider the case of a purely quantum channel in the Heisenberg picture. With the assumption that everything is finite-dimensional, is a unital CP map between spaces of matrices
By Choi's theorem on completely positive maps, must take the form
where N ≤ nm. The matrices Ki are called Kraus operators of (after the German physicist Karl Kraus, who introduced them). [13] [14] [15] The minimum number of Kraus operators is called the Kraus rank of . A channel with Kraus rank 1 is called pure. The time evolution is one example of a pure channel. This terminology again comes from the channel-state duality. A channel is pure if and only if its dual state is a pure state.
In quantum teleportation, a sender wishes to transmit an arbitrary quantum state of a particle to a possibly distant receiver. Consequently, the teleportation process is a quantum channel. The apparatus for the process itself requires a quantum channel for the transmission of one particle of an entangled-state to the receiver. Teleportation occurs by a joint measurement of the sent particle and the remaining entangled particle. This measurement results in classical information which must be sent to the receiver to complete the teleportation. Importantly, the classical information can be sent after the quantum channel has ceased to exist.
Experimentally, a simple implementation of a quantum channel is fiber optic (or free-space for that matter) transmission of single photons. Single photons can be transmitted up to 100 km in standard fiber optics before losses dominate.[ citation needed ] The photon's time-of-arrival (time-bin entanglement) or polarization are used as a basis to encode quantum information for purposes such as quantum cryptography. The channel is capable of transmitting not only basis states (e.g. , ) but also superpositions of them (e.g. ). The coherence of the state is maintained during transmission through the channel. Contrast this with the transmission of electrical pulses through wires (a classical channel), where only classical information (e.g. 0s and 1s) can be sent.
Before giving the definition of channel capacity, the preliminary notion of the norm of complete boundedness, or cb-norm of a channel needs to be discussed. When considering the capacity of a channel , we need to compare it with an "ideal channel" . For instance, when the input and output algebras are identical, we can choose to be the identity map. Such a comparison requires a metric between channels. Since a channel can be viewed as a linear operator, it is tempting to use the natural operator norm. In other words, the closeness of to the ideal channel can be defined by
However, the operator norm may increase when we tensor with the identity map on some ancilla.
To make the operator norm even a more undesirable candidate, the quantity
may increase without bound as The solution is to introduce, for any linear map between C*-algebras, the cb-norm
The mathematical model of a channel used here is same as the classical one.
Let be a channel in the Heisenberg picture and be a chosen ideal channel. To make the comparison possible, one needs to encode and decode Φ via appropriate devices, i.e. we consider the composition
where E is an encoder and D is a decoder. In this context, E and D are unital CP maps with appropriate domains. The quantity of interest is the best case scenario:
with the infimum being taken over all possible encoders and decoders.
To transmit words of length n, the ideal channel is to be applied n times, so we consider the tensor power
The operation describes n inputs undergoing the operation independently and is the quantum mechanical counterpart of concatenation. Similarly, m invocations of the channel corresponds to .
The quantity
is therefore a measure of the ability of the channel to transmit words of length n faithfully by being invoked m times.
This leads to the following definition:
A sequence can be viewed as representing a message consisting of possibly infinite number of words. The limit supremum condition in the definition says that, in the limit, faithful transmission can be achieved by invoking the channel no more than r times the length of a word. One can also say that r is the number of letters per invocation of the channel that can be sent without error.
The channel capacity of with respect to , denoted by is the supremum of all achievable rates.
From the definition, it is vacuously true that 0 is an achievable rate for any channel.
As stated before, for a system with observable algebra , the ideal channel is by definition the identity map . Thus for a purely n dimensional quantum system, the ideal channel is the identity map on the space of n × n matrices . As a slight abuse of notation, this ideal quantum channel will be also denoted by . Similarly, a classical system with output algebra will have an ideal channel denoted by the same symbol. We can now state some fundamental channel capacities.
The channel capacity of the classical ideal channel with respect to a quantum ideal channel is
This is equivalent to the no-teleportation theorem: it is impossible to transmit quantum information via a classical channel.
Moreover, the following equalities hold:
The above says, for instance, an ideal quantum channel is no more efficient at transmitting classical information than an ideal classical channel. When n = m, the best one can achieve is one bit per qubit.
It is relevant to note here that both of the above bounds on capacities can be broken, with the aid of entanglement. The entanglement-assisted teleportation scheme allows one to transmit quantum information using a classical channel. Superdense coding achieves two bits per qubit. These results indicate the significant role played by entanglement in quantum communication.
Using the same notation as the previous subsection, the classical capacity of a channel Ψ is
that is, it is the capacity of Ψ with respect to the ideal channel on the classical one-bit system .
Similarly the quantum capacity of Ψ is
where the reference system is now the one qubit system .
Another measure of how well a quantum channel preserves information is called channel fidelity, and it arises from fidelity of quantum states. Given two pure states and , their fidelity is the probability that one of them passes a test designed to identify the other: This can be generalized to the case where the two states being compared are given by density matrices: [16] [17]
The channel fidelity for a given channel is found by sending one half of a maximally entangled pair of systems through that channel, and calculating the fidelity between the resulting state and the original input. [18]
A bistochastic quantum channel is a quantum channel which is unital, [19] i.e. . These channels include unitary evolutions, convex combinations of unitaries, and (in dimensions larger than 2) other possibilities as well. [20]
Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.
Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.
In quantum mechanics, a density matrix is a matrix that describes an ensemble of physical systems as quantum states. It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles. Mixed ensembles arise in quantum mechanics in two different situations:
In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are complex-valued. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.
In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint—on the statistical occurrence of "coincidences" in a Bell test—which is necessarily true if an underlying local hidden-variable theory exists. In practice, the inequality is routinely violated by modern experiments in quantum mechanics.
Quantum decoherence is the loss of quantum coherence. Quantum decoherence has been studied to understand how quantum systems convert to systems which can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have confirmed some of the key issues. Quantum computing relies on quantum coherence and is one of the primary practical applications of the concept.
The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space H. It is named after V. A. Fock who first introduced it in his 1932 paper "Konfigurationsraum und zweite Quantelung".
The density matrix renormalization group (DMRG) is a numerical variational technique devised to obtain the low-energy physics of quantum many-body systems with high accuracy. As a variational method, DMRG is an efficient algorithm that attempts to find the lowest-energy matrix product state wavefunction of a Hamiltonian. It was invented in 1992 by Steven R. White and it is nowadays the most efficient method for 1-dimensional systems.
In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.
In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.
In linear algebra and functional analysis, the partial trace is a generalization of the trace. Whereas the trace is a scalar-valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the relative state interpretation.
LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed conditioned on the information received.
In linear algebra, the Schmidt decomposition refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory, for example in entanglement characterization and in state purification, and plasticity.
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring. It is a fundamental concept in all areas of quantum physics.
A decoherence-free subspace (DFS) is a subspace of a quantum system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary. DFSs can also be characterized as a special class of quantum error correcting codes. In this representation they are passive error-preventing codes since these subspaces are encoded with information that (possibly) won't require any active stabilization methods. These subspaces prevent destructive environmental interactions by isolating quantum information. As such, they are an important subject in quantum computing, where (coherent) control of quantum systems is the desired goal. Decoherence creates problems in this regard by causing loss of coherence between the quantum states of a system and therefore the decay of their interference terms, thus leading to loss of information from the (open) quantum system to the surrounding environment. Since quantum computers cannot be isolated from their environment and information can be lost, the study of DFSs is important for the implementation of quantum computers into the real world.
In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2) having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.
Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication. Entanglement distillation can overcome the degenerative influence of noisy quantum channels by transforming previously shared, less-entangled pairs into a smaller number of maximally-entangled pairs.
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system represented by the state. Knowledge of the quantum state, and the rules for the system's evolution in time, exhausts all that can be known about a quantum system.
In quantum information theory and quantum optics, the Schrödinger–HJW theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Erwin Schrödinger, Lane P. Hughston, Richard Jozsa and William Wootters. The result was also found independently by Nicolas Gisin, and by Nicolas Hadjisavvas building upon work by Ed Jaynes, while a significant part of it was likewise independently discovered by N. David Mermin. Thanks to its complicated history, it is also known by various other names such as the GHJW theorem, the HJW theorem, and the purification theorem.