In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the general dynamics of a qubit. An example of classical information is a text document transmitted over the Internet.
Terminologically, quantum channels are completely positive (CP) trace-preserving maps between spaces of operators. In other words, a quantum channel is just a quantum operation viewed not merely as the reduced dynamics of a system but as a pipeline intended to carry quantum information. (Some authors use the term "quantum operation" to include trace-decreasing maps while reserving "quantum channel" for strictly trace-preserving maps [1] )
We will assume for the moment that all state spaces of the systems considered, classical or quantum, are finite-dimensional.
The memoryless in the section title carries the same meaning as in classical information theory: the output of a channel at a given time depends only upon the corresponding input and not any previous ones.
Consider quantum channels that transmit only quantum information. This is precisely a quantum operation, whose properties we now summarize.
Let and be the state spaces (finite-dimensional Hilbert spaces) of the sending and receiving ends, respectively, of a channel. will denote the family of operators on In the Schrödinger picture, a purely quantum channel is a map between density matrices acting on and with the following properties:
The adjectives completely positive and trace preserving used to describe a map are sometimes abbreviated CPTP. In the literature, sometimes the fourth property is weakened so that is only required to be not trace-increasing. In this article, it will be assumed that all channels are CPTP.
Density matrices acting on HA only constitute a proper subset of the operators on HA and same can be said for system B. However, once a linear map between the density matrices is specified, a standard linearity argument, together with the finite-dimensional assumption, allow us to extend uniquely to the full space of operators. This leads to the adjoint map , which describes the action of in the Heisenberg picture:
The spaces of operators L(HA) and L(HB) are Hilbert spaces with the Hilbert–Schmidt inner product. Therefore, viewing as a map between Hilbert spaces, we obtain its adjoint * given by
While takes states on A to those on B, maps observables on system B to observables on A. This relationship is same as that between the Schrödinger and Heisenberg descriptions of dynamics. The measurement statistics remain unchanged whether the observables are considered fixed while the states undergo operation or vice versa.
It can be directly checked that if is assumed to be trace preserving, is unital, that is,. Physically speaking, this means that, in the Heisenberg picture, the trivial observable remains trivial after applying the channel.
So far we have only defined quantum channel that transmits only quantum information. As stated in the introduction, the input and output of a channel can include classical information as well. To describe this, the formulation given so far needs to be generalized somewhat. A purely quantum channel, in the Heisenberg picture, is a linear map Ψ between spaces of operators:
that is unital and completely positive (CP). The operator spaces can be viewed as finite-dimensional C*-algebras. Therefore, we can say a channel is a unital CP map between C*-algebras:
Classical information can then be included in this formulation. The observables of a classical system can be assumed to be a commutative C*-algebra, i.e. the space of continuous functions on some set . We assume is finite so can be identified with the n-dimensional Euclidean space with entry-wise multiplication.
Therefore, in the Heisenberg picture, if the classical information is part of, say, the input, we would define to include the relevant classical observables. An example of this would be a channel
Notice is still a C*-algebra. An element of a C*-algebra is called positive if for some . Positivity of a map is defined accordingly. This characterization is not universally accepted; the quantum instrument is sometimes given as the generalized mathematical framework for conveying both quantum and classical information. In axiomatizations of quantum mechanics, the classical information is carried in a Frobenius algebra or Frobenius category.
For a purely quantum system, the time evolution, at certain time t, is given by
where and H is the Hamiltonian and t is the time. Clearly this gives a CPTP map in the Schrödinger picture and is therefore a channel. The dual map in the Heisenberg picture is
Consider a composite quantum system with state space For a state
the reduced state of ρ on system A, ρA, is obtained by taking the partial trace of ρ with respect to the B system:
The partial trace operation is a CPTP map, therefore a quantum channel in the Schrödinger picture. In the Heisenberg picture, the dual map of this channel is
where A is an observable of system A.
An observable associates a numerical value to a quantum mechanical effect. 's are assumed to be positive operators acting on appropriate state space and . (Such a collection is called a POVM.) In the Heisenberg picture, the corresponding observable map maps a classical observable
to the quantum mechanical one
In other words, one integrates f against the POVM to obtain the quantum mechanical observable. It can be easily checked that is CP and unital.
The corresponding Schrödinger map takes density matrices to classical states:
where the inner product is the Hilbert–Schmidt inner product. Furthermore, viewing states as normalized functionals, and invoking the Riesz representation theorem, we can put
The observable map, in the Schrödinger picture, has a purely classical output algebra and therefore only describes measurement statistics. To take the state change into account as well, we define what is called a quantum instrument. Let be the effects (POVM) associated to an observable. In the Schrödinger picture, an instrument is a map with pure quantum input and with output space :
Let
The dual map in the Heisenberg picture is
where is defined in the following way: Factor (this can always be done since elements of a POVM are positive) then . We see that is CP and unital.
Notice that gives precisely the observable map. The map
describes the overall state change.
Suppose two parties A and B wish to communicate in the following manner: A performs the measurement of an observable and communicates the measurement outcome to B classically. According to the message he receives, B prepares his (quantum) system in a specific state. In the Schrödinger picture, the first part of the channel 1 simply consists of A making a measurement, i.e. it is the observable map:
If, in the event of the i-th measurement outcome, B prepares his system in state Ri, the second part of the channel 2 takes the above classical state to the density matrix
The total operation is the composition
Channels of this form are called measure-and-prepare or in Holevo form.
In the Heisenberg picture, the dual map is defined by
A measure-and-prepare channel can not be the identity map. This is precisely the statement of the no teleportation theorem, which says classical teleportation (not to be confused with entanglement-assisted teleportation) is impossible. In other words, a quantum state can not be measured reliably.
In the channel-state duality, a channel is measure-and-prepare if and only if the corresponding state is separable. Actually, all the states that result from the partial action of a measure-and-prepare channel are separable, and for this reason measure-and-prepare channels are also known as entanglement-breaking channels.
Consider the case of a purely quantum channel in the Heisenberg picture. With the assumption that everything is finite-dimensional, is a unital CP map between spaces of matrices
By Choi's theorem on completely positive maps, must take the form
where N ≤ nm. The matrices Ki are called Kraus operators of (after the German physicist Karl Kraus, who introduced them). The minimum number of Kraus operators is called the Kraus rank of . A channel with Kraus rank 1 is called pure. The time evolution is one example of a pure channel. This terminology again comes from the channel-state duality. A channel is pure if and only if its dual state is a pure state.
In quantum teleportation, a sender wishes to transmit an arbitrary quantum state of a particle to a possibly distant receiver. Consequently, the teleportation process is a quantum channel. The apparatus for the process itself requires a quantum channel for the transmission of one particle of an entangled-state to the receiver. Teleportation occurs by a joint measurement of the sent particle and the remaining entangled particle. This measurement results in classical information which must be sent to the receiver to complete the teleportation. Importantly, the classical information can be sent after the quantum channel has ceased to exist.
Experimentally, a simple implementation of a quantum channel is fiber optic (or free-space for that matter) transmission of single photons. Single photons can be transmitted up to 100 km in standard fiber optics before losses dominate. The photon's time-of-arrival (time-bin entanglement) or polarization are used as a basis to encode quantum information for purposes such as quantum cryptography. The channel is capable of transmitting not only basis states (e.g. , ) but also superpositions of them (e.g. ). The coherence of the state is maintained during transmission through the channel. Contrast this with the transmission of electrical pulses through wires (a classical channel), where only classical information (e.g. 0s and 1s) can be sent.
Before giving the definition of channel capacity, the preliminary notion of the norm of complete boundedness, or cb-norm of a channel needs to be discussed. When considering the capacity of a channel , we need to compare it with an "ideal channel" . For instance, when the input and output algebras are identical, we can choose to be the identity map. Such a comparison requires a metric between channels. Since a channel can be viewed as a linear operator, it is tempting to use the natural operator norm. In other words, the closeness of to the ideal channel can be defined by
However, the operator norm may increase when we tensor with the identity map on some ancilla.
To make the operator norm even a more undesirable candidate, the quantity
may increase without bound as The solution is to introduce, for any linear map between C*-algebras, the cb-norm
The mathematical model of a channel used here is same as the classical one.
Let be a channel in the Heisenberg picture and be a chosen ideal channel. To make the comparison possible, one needs to encode and decode Φ via appropriate devices, i.e. we consider the composition
where E is an encoder and D is a decoder. In this context, E and D are unital CP maps with appropriate domains. The quantity of interest is the best case scenario:
with the infimum being taken over all possible encoders and decoders.
To transmit words of length n, the ideal channel is to be applied n times, so we consider the tensor power
The operation describes n inputs undergoing the operation independently and is the quantum mechanical counterpart of concatenation. Similarly, m invocations of the channel corresponds to .
The quantity
is therefore a measure of the ability of the channel to transmit words of length n faithfully by being invoked m times.
This leads to the following definition:
A sequence can be viewed as representing a message consisting of possibly infinite number of words. The limit supremum condition in the definition says that, in the limit, faithful transmission can be achieved by invoking the channel no more than r times the length of a word. One can also say that r is the number of letters per invocation of the channel that can be sent without error.
The channel capacity of with respect to , denoted by is the supremum of all achievable rates.
From the definition, it is vacuously true that 0 is an achievable rate for any channel.
As stated before, for a system with observable algebra , the ideal channel is by definition the identity map . Thus for a purely n dimensional quantum system, the ideal channel is the identity map on the space of n × n matrices . As a slight abuse of notation, this ideal quantum channel will be also denoted by . Similarly, a classical system with output algebra will have an ideal channel denoted by the same symbol. We can now state some fundamental channel capacities.
The channel capacity of the classical ideal channel with respect to a quantum ideal channel is
This is equivalent to the no-teleportation theorem: it is impossible to transmit quantum information via a classical channel.
Moreover, the following equalities hold:
The above says, for instance, an ideal quantum channel is no more efficient at transmitting classical information than an ideal classical channel. When n = m, the best one can achieve is one bit per qubit.
It is relevant to note here that both of the above bounds on capacities can be broken, with the aid of entanglement. The entanglement-assisted teleportation scheme allows one to transmit quantum information using a classical channel. Superdense coding. achieves two bit per qubit. These results indicate the significant role played by entanglement in quantum communication.
Using the same notation as the previous subsection, the classical capacity of a channel Ψ is
that is, it is the capacity of Ψ with respect to the ideal channel on the classical one-bit system .
Similarly the quantum capacity of Ψ is
where the reference system is now the one qubit system .
This section needs expansion. You can help by adding to it. (June 2008) |
Another measure of how well a quantum channel preserves information is called channel fidelity, and it arises from fidelity of quantum states.
A bistochastic quantum channel is a quantum channel which is unital, [2] i.e. .
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.
Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.
In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are complex-valued. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.
In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint—on the statistical occurrence of "coincidences" in a Bell test—which is necessarily true if an underlying local hidden-variable theory exists. In practice, the inequality is routinely violated by modern experiments in quantum mechanics.
Quantum decoherence is the loss of quantum coherence. Quantum decoherence has been studied to understand how quantum systems convert to systems which can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have confirmed some of the key issues. Quantum computing relies on quantum coherence and is one of the primary practical applications of the concept.
In linear algebra and functional analysis, the partial trace is a generalization of the trace. Whereas the trace is a scalar valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the relative state interpretation.
LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed conditioned on the information received.
In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.
In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two coherence maps—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors
CEILIDH is a public key cryptosystem based on the discrete logarithm problem in algebraic torus. This idea was first introduced by Alice Silverberg and Karl Rubin in 2003; Silverberg named CEILIDH after her cat. The main advantage of the system is the reduced size of the keys for the same security over basic schemes.
A decoherence-free subspace (DFS) is a subspace of a quantum system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary. DFSs can also be characterized as a special class of quantum error correcting codes. In this representation they are passive error-preventing codes since these subspaces are encoded with information that (possibly) won't require any active stabilization methods. These subspaces prevent destructive environmental interactions by isolating quantum information. As such, they are an important subject in quantum computing, where (coherent) control of quantum systems is the desired goal. Decoherence creates problems in this regard by causing loss of coherence between the quantum states of a system and therefore the decay of their interference terms, thus leading to loss of information from the (open) quantum system to the surrounding environment. Since quantum computers cannot be isolated from their environment and information can be lost, the study of DFSs is important for the implementation of quantum computers into the real world.
In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2)having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.
Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.
A quantum depolarizing channel is a model for quantum noise in quantum systems. The -dimensional depolarizing channel can be viewed as a completely positive trace-preserving map , depending on one parameter , which maps a state onto a linear combination of itself and the maximally mixed state,
The min-entropy, in information theory, is the smallest of the Rényi family of entropies, corresponding to the most conservative way of measuring the unpredictability of a set of outcomes, as the negative logarithm of the probability of the most likely outcome. The various Rényi entropies are all equal for a uniform distribution, but measure the unpredictability of a nonuniform distribution in different ways. The min-entropy is never greater than the ordinary or Shannon entropy and that in turn is never greater than the Hartley or max-entropy, defined as the logarithm of the number of outcomes with nonzero probability.
The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale. As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.
In quantum information theory and operator theory, the Choi–Jamiołkowski isomorphism refers to the correspondence between quantum channels and quantum states, this is introduced by Man-Duen Choi and Andrzej Jamiołkowski. It is also called channel-state duality by some authors in the quantum information area, but mathematically, this is a more general correspondence between positive operators and the complete positive superoperators.
In quantum information theory and quantum optics, the Schrödinger–HJW theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Erwin Schrödinger, Lane P. Hughston, Richard Jozsa and William Wootters. The result was also found independently by Nicolas Gisin, and by Nicolas Hadjisavvas building upon work by Ed Jaynes, while a significant part of it was likewise independently discovered by N. David Mermin. Thanks to its complicated history, it is also known by various other names such as the GHJW theorem, the HJW theorem, and the purification theorem.
In quantum information, the diamond norm, also known as completely bounded trace norm, is a norm on the space of quantum operations, or more generally on any linear map that acts on complex matrices. Its main application is to measure the "single use distinguishability" of two quantum channels. If an agent is randomly given one of two quantum channels, permitted to pass one state through the unknown channel, and then measures the state in an attempt to determine which operation they were given, then their maximal probability of success is determined by the diamond norm of the difference of the two channels.