In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory ( Nakayama 1939 ), ( Nakayama 1941 ). Jean Dieudonné used this to characterize Frobenius algebras ( Dieudonné 1958 ). Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.
A finite-dimensional, unital, associative algebra A defined over a field k is said to be a Frobenius algebra if A is equipped with a nondegenerate bilinear form σ : A × A → k that satisfies the following equation: σ(a·b, c) = σ(a, b·c). This bilinear form is called the Frobenius form of the algebra.
Equivalently, one may equip A with a linear functional λ : A → k such that the kernel of λ contains no nonzero left ideal of A.
A Frobenius algebra is called symmetric if σ is symmetric, or equivalently λ satisfies λ(a·b) = λ(b·a).
There is also a different, mostly unrelated notion of the symmetric algebra of a vector space.
For a Frobenius algebra A with σ as above, the automorphism ν of A such that σ(a, b) = σ(ν(b), a) is Nakayama automorphism associated to A and σ.
In category theory, the notion of Frobenius object is an abstract definition of a Frobenius algebra in a category. A Frobenius object in a monoidal category consists of an object A of C together with four morphisms
such that
and
commute (for simplicity the diagrams are given here in the case where the monoidal category C is strict) and are known as Frobenius conditions. [5]
More compactly, a Frobenius algebra in C is a so-called Frobenius monoidal functor A:1 → C, where 1 is the category consisting of one object and one arrow.
A Frobenius algebra is called isometric or special if .
Frobenius algebras originally were studied as part of an investigation into the representation theory of finite groups, and have contributed to the study of number theory, algebraic geometry, and combinatorics. They have been used to study Hopf algebras, coding theory, and cohomology rings of compact oriented manifolds.
Recently, it has been seen that they play an important role in the algebraic treatment and axiomatic foundation of topological quantum field theory. A commutative Frobenius algebra determines uniquely (up to isomorphism) a (1+1)-dimensional TQFT. More precisely, the category of commutative Frobenius -algebras is equivalent to the category of symmetric strong monoidal functors from - (the category of 2-dimensional cobordisms between 1-dimensional manifolds) to (the category of vector spaces over ).
The correspondence between TQFTs and Frobenius algebras is given as follows:
This relation between Frobenius algebras and (1+1)-dimensional TQFTs can be used to explain Khovanov's categorification of the Jones polynomial. [6] [7]
Let B be a subring sharing the identity element of a unital associative ring A. This is also known as ring extension A | B. Such a ring extension is called Frobenius if
The map E is sometimes referred to as a Frobenius homomorphism and the elements as dual bases. (As an exercise it is possible to give an equivalent definition of Frobenius extension as a Frobenius algebra-coalgebra object in the category of B-B-bimodules, where the equations just given become the counit equations for the counit E.)
For example, a Frobenius algebra A over a commutative ring K, with associative nondegenerate bilinear form (-,-) and projective K-bases is a Frobenius extension A | K with E(a) = (a,1). Other examples of Frobenius extensions are pairs of group algebras associated to a subgroup of finite index, Hopf subalgebras of a semisimple Hopf algebra, Galois extensions and certain von Neumann algebra subfactors of finite index. Another source of examples of Frobenius extensions (and twisted versions) are certain subalgebra pairs of Frobenius algebras, where the subalgebra is stabilized by the symmetrizing automorphism of the overalgebra.
The details of the group ring example are the following application of elementary notions in group theory. Let G be a group and H a subgroup of finite index n in G; let g1, ..., gn. be left coset representatives, so that G is a disjoint union of the cosets g1H, ..., gnH. Over any commutative base ring k define the group algebras A = k[G] and B = k[H], so B is a subalgebra of A. Define a Frobenius homomorphism E: A → B by letting E(h) = h for all h in H, and E(g) = 0 for g not in H : extend this linearly from the basis group elements to all of A, so one obtains the B-B-bimodule projection
(The orthonormality condition follows.) The dual base is given by , since
The other dual base equation may be derived from the observation that G is also a disjoint union of the right cosets .
Also Hopf-Galois extensions are Frobenius extensions by a theorem of Kreimer and Takeuchi from 1989. A simple example of this is a finite group G acting by automorphisms on an algebra A with subalgebra of invariants:
By DeMeyer's criterion A is G-Galois over B if there are elements in A satisfying:
whence also
Then A is a Frobenius extension of B with E: A → B defined by
which satisfies
(Furthermore, an example of a separable algebra extension since is a separability element satisfying ea = ae for all a in A as well as . Also an example of a depth two subring (B in A) since
where
for each g in G and a in A.)
Frobenius extensions have a well-developed theory of induced representations investigated in papers by Kasch and Pareigis, Nakayama and Tzuzuku in the 1950s and 1960s. For example, for each B-module M, the induced module A ⊗BM (if M is a left module) and co-induced module HomB(A, M) are naturally isomorphic as A-modules (as an exercise one defines the isomorphism given E and dual bases). The endomorphism ring theorem of Kasch from 1960 states that if A | B is a Frobenius extension, then so is A → End(AB) where the mapping is given by a ↦ λa(x) and λa(x) = ax for each a,x ∈ A. Endomorphism ring theorems and converses were investigated later by Mueller, Morita, Onodera and others.
In mathematics, an associative algebraA is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field K. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.
In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.
Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.
In mathematics, coalgebras or cogebras are structures that are dual to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions.
In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.
In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.
In mathematics, a monoidal category is a category equipped with a bifunctor
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.
In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.
In algebra, a flat module over a ring R is an R-module M such that taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.
In mathematics, the symmetric algebraS(V) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism g : S(V) → A such that f = g ∘ i, where i is the inclusion map of V in S(V).
In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. It allows the study of bilinear or multilinear operations via linear operations. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.
In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that
In mathematics, the group Hopf algebra of a given group is a certain construct related to the symmetries of group actions. Deformations of group Hopf algebras are foundational in the theory of quantum groups.
In mathematics, a separable algebra is a kind of semisimple algebra. It is a generalization to associative algebras of the notion of a separable field extension.
In ring theory and Frobenius algebra extensions, areas of mathematics, there is a notion of depth two subring or depth of a Frobenius extension. The notion of depth two is important in a certain noncommutative Galois theory, which generates Hopf algebroids in place of the more classical Galois groups, whereas the notion of depth greater than two measures the defect, or distance, from being depth two in a tower of iterated endomorphism rings above the subring. A more recent definition of depth of any unital subring in any associative ring is proposed in a paper studying the depth of a subgroup of a finite group as group algebras over a commutative ring.
In algebra, the Nichols algebra of a braided vector space is a braided Hopf algebra which is denoted by and named after the mathematician Warren Nichols. It takes the role of quantum Borel part of a pointed Hopf algebra such as a quantum groups and their well known finite-dimensional truncations. Nichols algebras can immediately be used to write down new such quantum groups by using the Radford biproduct.
In mathematics, weak bialgebras are a generalization of bialgebras that are both algebras and coalgebras but for which the compatibility conditions between the two structures have been "weakened". In the same spirit, weak Hopf algebras are weak bialgebras together with a linear map S satisfying specific conditions; they are generalizations of Hopf algebras.