Simple module

Last updated

In mathematics, specifically in ring theory, the simple modules over a ring R are the (left or right) modules over R that are non-zero and have no non-zero proper submodules. Equivalently, a module M is simple if and only if every cyclic submodule generated by a non-zero element of M equals M. Simple modules form building blocks for the modules of finite length, and they are analogous to the simple groups in group theory.

Contents

In this article, all modules will be assumed to be right unital modules over a ring R.

Examples

Z -modules are the same as abelian groups, so a simple Z-module is an abelian group which has no non-zero proper subgroups. These are the cyclic groups of prime order.

If I is a right ideal of R, then I is simple as a right module if and only if I is a minimal non-zero right ideal: If M is a non-zero proper submodule of I, then it is also a right ideal, so I is not minimal. Conversely, if I is not minimal, then there is a non-zero right ideal J properly contained in I. J is a right submodule of I, so I is not simple.

If I is a right ideal of R, then the quotient module R/I is simple if and only if I is a maximal right ideal: If M is a non-zero proper submodule of R/I, then the preimage of M under the quotient map RR/I is a right ideal which is not equal to R and which properly contains I. Therefore, I is not maximal. Conversely, if I is not maximal, then there is a right ideal J properly containing I. The quotient map R/IR/J has a non-zero kernel which is not equal to R/I, and therefore R/I is not simple.

Every simple R-module is isomorphic to a quotient R/m where m is a maximal right ideal of R. [1] By the above paragraph, any quotient R/m is a simple module. Conversely, suppose that M is a simple R-module. Then, for any non-zero element x of M, the cyclic submodule xR must equal M. Fix such an x. The statement that xR = M is equivalent to the surjectivity of the homomorphism RM that sends r to xr. The kernel of this homomorphism is a right ideal I of R, and a standard theorem states that M is isomorphic to R/I. By the above paragraph, we find that I is a maximal right ideal. Therefore, M is isomorphic to a quotient of R by a maximal right ideal.

If k is a field and G is a group, then a group representation of G is a left module over the group ring k[G] (for details, see the main page on this relationship). [2] The simple k[G]-modules are also known as irreducible representations. A major aim of representation theory is to understand the irreducible representations of groups.

Basic properties of simple modules

The simple modules are precisely the modules of length 1; this is a reformulation of the definition.

Every simple module is indecomposable, but the converse is in general not true.

Every simple module is cyclic, that is it is generated by one element.

Not every module has a simple submodule; consider for instance the Z-module Z in light of the first example above.

Let M and N be (left or right) modules over the same ring, and let f : MN be a module homomorphism. If M is simple, then f is either the zero homomorphism or injective because the kernel of f is a submodule of M. If N is simple, then f is either the zero homomorphism or surjective because the image of f is a submodule of N. If M = N, then f is an endomorphism of M, and if M is simple, then the prior two statements imply that f is either the zero homomorphism or an isomorphism. Consequently, the endomorphism ring of any simple module is a division ring. This result is known as Schur's lemma .

The converse of Schur's lemma is not true in general. For example, the Z-module Q is not simple, but its endomorphism ring is isomorphic to the field Q.

Simple modules and composition series

If M is a module which has a non-zero proper submodule N, then there is a short exact sequence

A common approach to proving a fact about M is to show that the fact is true for the center term of a short exact sequence when it is true for the left and right terms, then to prove the fact for N and M/N. If N has a non-zero proper submodule, then this process can be repeated. This produces a chain of submodules

In order to prove the fact this way, one needs conditions on this sequence and on the modules Mi/Mi+1. One particularly useful condition is that the length of the sequence is finite and each quotient module Mi/Mi+1 is simple. In this case the sequence is called a composition series for M. In order to prove a statement inductively using composition series, the statement is first proved for simple modules, which form the base case of the induction, and then the statement is proved to remain true under an extension of a module by a simple module. For example, the Fitting lemma shows that the endomorphism ring of a finite length indecomposable module is a local ring, so that the strong Krull–Schmidt theorem holds and the category of finite length modules is a Krull-Schmidt category.

The Jordan–Hölder theorem and the Schreier refinement theorem describe the relationships amongst all composition series of a single module. The Grothendieck group ignores the order in a composition series and views every finite length module as a formal sum of simple modules. Over semisimple rings, this is no loss as every module is a semisimple module and so a direct sum of simple modules. Ordinary character theory provides better arithmetic control, and uses simple CG modules to understand the structure of finite groups G. Modular representation theory uses Brauer characters to view modules as formal sums of simple modules, but is also interested in how those simple modules are joined together within composition series. This is formalized by studying the Ext functor and describing the module category in various ways including quivers (whose nodes are the simple modules and whose edges are composition series of non-semisimple modules of length 2) and Auslander–Reiten theory where the associated graph has a vertex for every indecomposable module.

The Jacobson density theorem

An important advance in the theory of simple modules was the Jacobson density theorem. The Jacobson density theorem states:

Let U be a simple right R-module and let D = EndR(U). Let A be any D-linear operator on U and let X be a finite D-linearly independent subset of U. Then there exists an element r of R such that x·A = x·r for all x in X. [3]

In particular, any primitive ring may be viewed as (that is, isomorphic to) a ring of D-linear operators on some D-space.

A consequence of the Jacobson density theorem is Wedderburn's theorem; namely that any right Artinian simple ring is isomorphic to a full matrix ring of n-by-n matrices over a division ring for some n. This can also be established as a corollary of the Artin–Wedderburn theorem.

See also

Related Research Articles

In mathematics, specifically abstract algebra, the isomorphism theorems are theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and various other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences.

In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal amongst all proper ideals. In other words, I is a maximal ideal of a ring R if there are no other ideals contained between I and R.

Ring (mathematics) Algebraic structure with addition and multiplication

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ringX, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.

In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.

Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.

Module (mathematics) Generalization of vector space over a ring instead of a field

In mathematics, a module is a generalization of the notion of vector space, wherein the field of scalars is replaced by a ring. The concept of module is also a generalization of the one of abelian group, since the abelian groups are exactly the modules over the ring of integers.

In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type.

In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, then any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook.

In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N and φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which is due to Jacques Dixmier.

In abstract algebra, a module is indecomposable if it is non-zero and cannot be written as a direct sum of two non-zero submodules.

In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient. The structure of Artinian semisimple rings is well understood by the Artin–Wedderburn theorem, which exhibits these rings as finite direct products of matrix rings.

Modular representation theory is a branch of mathematics, and is the part of representation theory that studies linear representations of finite groups over a field K of positive characteristic p, necessarily a prime number. As well as having applications to group theory, modular representations arise naturally in other branches of mathematics, such as algebraic geometry, coding theory, combinatorics and number theory.

In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain (PID) can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields.

Noncommutative ring Algebraic structure

In mathematics, more specifically abstract algebra and ring theory, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exists a and b in R with a·bb·a. Many authors use the term noncommutative rings to refer to rings which are not necessarily commutative, and hence include commutative rings in their definition. Noncommutative algebra is the study of results applying to rings that are not required to be commutative. Many important results in the field of noncommutative algebra apply to commutative rings as special cases.

Module theory is the branch of mathematics in which modules are studied. This is a glossary of some terms of the subject.

In abstract algebra, a uniserial moduleM is a module over a ring R, whose submodules are totally ordered by inclusion. This means simply that for any two submodules N1 and N2 of M, either or . A module is called a serial module if it is a direct sum of uniserial modules. A ring R is called a right uniserial ring if it is uniserial as a right module over itself, and likewise called a right serial ring if it is a right serial module over itself. Left uniserial and left serial rings are defined in an analogous way, and are in general distinct from their right counterparts.

This is a glossary of commutative algebra.

In abstract algebra, a decomposition of a module is a way to write a module as a direct sum of modules. A type of a decomposition is often used to define or characterize modules: for example, a semisimple module is a module that has a decomposition into simple modules. Given a ring, the types of decomposition of modules over the ring can also be used to define or characterize the ring: a ring is semisimple if and only if every module over it is a semisimple module.

References

  1. Herstein, Non-commutative Ring Theory, Lemma 1.1.3
  2. Serre, Jean-Pierre (1977). Linear Representations of Finite Groups. New York: Springer-Verlag. pp.  47. ISBN   0387901906. ISSN   0072-5285. OCLC   2202385.
  3. Isaacs, Theorem 13.14, p. 185