This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(June 2015) |
In the branch of abstract algebra known as ring theory, a left primitive ring is a ring which has a faithful simple left module. Well known examples include endomorphism rings of vector spaces and Weyl algebras over fields of characteristic zero.
A ring R is said to be a left primitive ring if it has a faithful simple left R-module. A right primitive ring is defined similarly with right R-modules. There are rings which are primitive on one side but not on the other. The first example was constructed by George M. Bergman in ( Bergman 1964 ). Another example found by Jategaonkar showing the distinction can be found in Rowen (1988 , p. 159).
An internal characterization of left primitive rings is as follows: a ring is left primitive if and only if there is a maximal left ideal containing no nonzero two-sided ideals. The analogous definition for right primitive rings is also valid.
The structure of left primitive rings is completely determined by the Jacobson density theorem: A ring is left primitive if and only if it is isomorphic to a dense subring of the ring of endomorphisms of a left vector space over a division ring.
Another equivalent definition states that a ring is left primitive if and only if it is a prime ring with a faithful left module of finite length (Lam 2001, Ex. 11.19, p. 191).
One-sided primitive rings are both semiprimitive rings and prime rings. Since the product ring of two or more nonzero rings is not prime, it is clear that the product of primitive rings is never primitive.
For a left Artinian ring, it is known that the conditions "left primitive", "right primitive", "prime", and "simple" are all equivalent, and in this case it is a semisimple ring isomorphic to a square matrix ring over a division ring. More generally, in any ring with a minimal one sided ideal, "left primitive" = "right primitive" = "prime".
A commutative ring is left primitive if and only if it is a field.
Being left primitive is a Morita invariant property.
Every simple ring R with unity is both left and right primitive. (However, a simple non-unital ring may not be primitive.) This follows from the fact that R has a maximal left ideal M, and the fact that the quotient module R/M is a simple left R-module, and that its annihilator is a proper two-sided ideal in R. Since R is a simple ring, this annihilator is {0} and therefore R/M is a faithful left R-module.
Weyl algebras over fields of characteristic zero are primitive, and since they are domains, they are examples without minimal one-sided ideals.
A special case of primitive rings is that of full linear rings. A left full linear ring is the ring of all linear transformations of an infinite-dimensional left vector space over a division ring. (A right full linear ring differs by using a right vector space instead.) In symbols, where V is a vector space over a division ring D. It is known that R is a left full linear ring if and only if R is von Neumann regular, left self-injective with socle soc(RR) ≠ {0}. [1] Through linear algebra arguments, it can be shown that is isomorphic to the ring of row finite matrices , where I is an index set whose size is the dimension of V over D. Likewise right full linear rings can be realized as column finite matrices over D.
Using this we can see that there are non-simple left primitive rings. By the Jacobson Density characterization, a left full linear ring R is always left primitive. When dimDV is finite R is a square matrix ring over D, but when dimDV is infinite, the set of finite rank linear transformations is a proper two-sided ideal of R, and hence R is not simple.
In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element a has a multiplicative inverse, that is, an element usually denoted a–1, such that a a–1 = a–1 a = 1. So, (right) division may be defined as a / b = a b–1, but this notation is avoided, as one may have a b–1 ≠ b–1 a.
In mathematics, specifically in ring theory, the simple modules over a ring R are the modules over R that are non-zero and have no non-zero proper submodules. Equivalently, a module M is simple if and only if every cyclic submodule generated by a non-zero element of M equals M. Simple modules form building blocks for the modules of finite length, and they are analogous to the simple groups in group theory.
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left–right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or rad(R); the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in Jacobson 1945.
In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.
In algebra, ring theory is the study of rings, algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings; their representations, or, in different language, modules; special classes of rings ; related structures like rngs; as well as an array of properties that prove to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of a module also generalizes the notion of an abelian group, since the abelian groups are exactly the modules over the ring of integers.
In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring is an element a such that a2 = a. That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... = an for any positive integer n. For example, an idempotent element of a matrix ring is precisely an idempotent matrix.
In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field.
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook.
In abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication. The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. A subring of a matrix ring is again a matrix ring. Over a rng, one can form matrix rngs.
In mathematics, more specifically non-commutative ring theory, modern algebra, and module theory, the Jacobson density theorem is a theorem concerning simple modules over a ring R.
In abstract algebra, a module is indecomposable if it is non-zero and cannot be written as a direct sum of two non-zero submodules.
In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient. The structure of Artinian semisimple rings is well understood by the Artin–Wedderburn theorem, which exhibits these rings as finite direct products of matrix rings.
Modular representation theory is a branch of mathematics, and is the part of representation theory that studies linear representations of finite groups over a field K of positive characteristic p, necessarily a prime number. As well as having applications to group theory, modular representations arise naturally in other branches of mathematics, such as algebraic geometry, coding theory, combinatorics and number theory.
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring.
Module theory is the branch of mathematics in which modules are studied. This is a glossary of some terms of the subject.
In the branch of abstract algebra called ring theory, the double centralizer theorem can refer to any one of several similar results. These results concern the centralizer of a subring S of a ring R, denoted CR(S) in this article. It is always the case that CR(CR(S)) contains S, and a double centralizer theorem gives conditions on R and S that guarantee that CR(CR(S)) is equal to S.
In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of simple objects, and simple objects are those that do not contain non-trivial proper sub-objects. The precise definitions of these words depends on the context.