Weyl algebra

Last updated

In abstract algebra, the Weyl algebras are abstracted from the ring of differential operators with polynomial coefficients. They are named after Hermann Weyl, who introduced them to study the Heisenberg uncertainty principle in quantum mechanics.

Contents

In the simplest case, these are differential operators. Let be a field, and let be the ring of polynomials in one variable with coefficients in . Then the corresponding Weyl algebra consists of differential operators of form

In this case, corresponds to left multiplication by , and corresponds to taking derivative with respect to . This is the first Weyl algebra. The n-th Weyl algebra are constructed similarly.

Alternatively, can be constructed as the quotient of the free algebra on two generators, q and p, by the ideal generated by . Similarly, is obtained by quotienting the free algebra on 2n generators by the ideal generated bywhere is the Kronecker delta.

More generally, let be a partial differential ring with commuting derivatives . The Weyl algebra associated to is the noncommutative ring satisfying the relations for all . The previous case is the special case where and where is a field.

This article discusses only the case of with underlying field characteristic zero, unless otherwise stated.

The Weyl algebra is an example of a simple ring that is not a matrix ring over a division ring. It is also a noncommutative example of a domain, and an example of an Ore extension.

Motivation

The Weyl algebra arises naturally in the context of quantum mechanics and the process of canonical quantization. Consider a classical phase space with canonical coordinates . These coordinates satisfy the Poisson bracket relations:In canonical quantization, one seeks to construct a Hilbert space of states and represent the classical observables (functions on phase space) as self-adjoint operators on this space. The canonical commutation relations are imposed:where denotes the commutator. Here, and are the operators corresponding to and respectively. Erwin Schrödinger proposed in 1926 the following: [1]

With this identification, the canonical commutation relation holds.

Constructions

The Weyl algebras have different constructions, with different levels of abstraction.

Representation

The Weyl algebra can be concretely constructed as a representation.

In the differential operator representation, similar to Schrödinger's canonical quantization, let be represented by multiplication on the left by , and let be represented by differentiation on the left by .

In the matrix representation, similar to the matrix mechanics, is represented by [2]

Generator

can be constructed as a quotient of a free algebra in terms of generators and relations. One construction starts with an abstract vector space V (of dimension 2n) equipped with a symplectic form ω. Define the Weyl algebra W(V) to be

where T(V) is the tensor algebra on V, and the notation means "the ideal generated by".

In other words, W(V) is the algebra generated by V subject only to the relation vuuv = ω(v, u). Then, W(V) is isomorphic to An via the choice of a Darboux basis for ω.

is also a quotient of the universal enveloping algebra of the Heisenberg algebra, the Lie algebra of the Heisenberg group, by setting the central element of the Heisenberg algebra (namely [q, p]) equal to the unit of the universal enveloping algebra (called 1 above).

Quantization

The algebra W(V) is a quantization of the symmetric algebra Sym(V). If V is over a field of characteristic zero, then W(V) is naturally isomorphic to the underlying vector space of the symmetric algebra Sym(V) equipped with a deformed product – called the Groenewold–Moyal product (considering the symmetric algebra to be polynomial functions on V, where the variables span the vector space V, and replacing in the Moyal product formula with 1).

The isomorphism is given by the symmetrization map from Sym(V) to W(V)

If one prefers to have the and work over the complex numbers, one could have instead defined the Weyl algebra above as generated by qi and iħ∂qi (as per quantum mechanics usage).

Thus, the Weyl algebra is a quantization of the symmetric algebra, which is essentially the same as the Moyal quantization (if for the latter one restricts to polynomial functions), but the former is in terms of generators and relations (considered to be differential operators) and the latter is in terms of a deformed multiplication.

Stated in another way, let the Moyal star product be denoted , then the Weyl algebra is isomorphic to . [3]

In the case of exterior algebras, the analogous quantization to the Weyl one is the Clifford algebra, which is also referred to as the orthogonal Clifford algebra. [4] [5]

The Weyl algebra is also referred to as the symplectic Clifford algebra. [4] [5] [6] Weyl algebras represent for symplectic bilinear forms the same structure that Clifford algebras represent for non-degenerate symmetric bilinear forms. [6]

D-module

The Weyl algebra can be constructed as a D-module. [7]

Let be a commutative algebra over . The ring of differential operators is inductively defined as a graded subalgebra of :

Let be the union of all for . This is a subalgebra of .

is generated, as an -module, by 1 and the -derivations of . In particular, if , the polynomial ring in one variable, then . In fact, . [8]

Properties of An

Many properties of apply to with essentially similar proofs, since the different dimensions commute.

General Leibniz rule

Theorem (general Leibniz rule)  

Proof

Under the representation, this equation is obtained by the general Leibniz rule. Since the general Leibniz rule is provable by algebraic manipulation, it holds for as well.

In particular, and .

Corollary  The center of Weyl algebra is the underlying field of constants .

Proof

If the commutator of with either of is zero, then by the previous statement, has no monomial with or .

Degree

Theorem   has a basis . [9]

Proof

By repeating the commutator relations, any monomial can be equated to a linear sum of these. It remains to check that these are linearly independent. This can be checked in the differential operator representation. For any linear sum with nonzero coefficients, group it in descending order: , where is a nonzero polynomial. This operator applied to results in .

This allows to be a graded algebra, where the degree of is among its nonzero monomials. The degree is similarly defined for .

Theorem  For : [10]

Proof

We prove it for , as the case is similar.

The first relation is by definition. The second relation is by the general Leibniz rule. For the third relation, note that , so it is sufficient to check that contains at least one nonzero monomial that has degree . To find such a monomial, pick the one in with the highest degree. If there are multiple such monomials, pick the one with the highest power in . Similarly for . These two monomials, when multiplied together, create a unique monomial among all monomials of , and so it remains nonzero.

Theorem   is a simple domain. [11]

That is, it has no two-sided nontrivial ideals and has no zero divisors.

Proof

Because , it has no zero divisors.

Suppose for contradiction that is a nonzero two-sided ideal of , with . Pick a nonzero element with the lowest degree.

If contains some nonzero monomial of form , then contains a nonzero monomial of form Thus is nonzero, and has degree . As is a two-sided ideal, we have , which contradicts the minimality of .

Similarly, if contains some nonzero monomial of form , then is nonzero with lower degree.

Derivation

Theorem  The derivations of are in bijection with the elements of up to an additive scalar. [12]

That is, any derivation is equal to for some ; any yields a derivation ; if satisfies , then .

The proof is similar to computing the potential function for a conservative polynomial vector field on the plane. [13]

Proof

Since the commutator is a derivation in both of its entries, is a derivation for any . Uniqueness up to additive scalar is because the center of is the ring of scalars.

It remains to prove that any derivation is an inner derivation by induction on .

Base case: Let be a linear map that is a derivation. We construct an element such that . Since both and are derivations, these two relations generate for all .

Since , there exists an element such that

Thus, for some polynomial . Now, since , there exists some polynomial such that . Since , is the desired element.

For the induction step, similarly to the above calculation, there exists some element such that .

Similar to the above calculation, for all . Since is a derivation in both and , for all and all . Here, means the subalgebra generated by the elements.

Thus, ,

Since is also a derivation, by induction, there exists such that for all .

Since commutes with , we have for all , and so for all of .

Representation theory

Zero characteristic

In the case that the ground field F has characteristic zero, the nth Weyl algebra is a simple Noetherian domain. [14] It has global dimension n, in contrast to the ring it deforms, Sym(V), which has global dimension 2n.

It has no finite-dimensional representations. Although this follows from simplicity, it can be more directly shown by taking the trace of σ(q) and σ(Y) for some finite-dimensional representation σ (where [q,p] = 1).

Since the trace of a commutator is zero, and the trace of the identity is the dimension of the representation, the representation must be zero dimensional.

In fact, there are stronger statements than the absence of finite-dimensional representations. To any finitely generated An-module M, there is a corresponding subvariety Char(M) of V × V called the 'characteristic variety'[ clarification needed ] whose size roughly corresponds to the size[ clarification needed ] of M (a finite-dimensional module would have zero-dimensional characteristic variety). Then Bernstein's inequality states that for M non-zero,

An even stronger statement is Gabber's theorem, which states that Char(M) is a co-isotropic subvariety of V × V for the natural symplectic form.

Positive characteristic

The situation is considerably different in the case of a Weyl algebra over a field of characteristic p > 0.

In this case, for any element D of the Weyl algebra, the element Dp is central, and so the Weyl algebra has a very large center. In fact, it is a finitely generated module over its center; even more so, it is an Azumaya algebra over its center. As a consequence, there are many finite-dimensional representations which are all built out of simple representations of dimension p.

Generalizations

The ideals and automorphisms of have been well-studied. [15] [16] The moduli space for its right ideal is known. [17] However, the case for is considerably harder and is related to the Jacobian conjecture. [18]

For more details about this quantization in the case n = 1 (and an extension using the Fourier transform to a class of integrable functions larger than the polynomial functions), see Wigner–Weyl transform.

Weyl algebras and Clifford algebras admit a further structure of a *-algebra, and can be unified as even and odd terms of a superalgebra, as discussed in CCR and CAR algebras.

Affine varieties

Weyl algebras also generalize in the case of algebraic varieties. Consider a polynomial ring

Then a differential operator is defined as a composition of -linear derivations of . This can be described explicitly as the quotient ring

See also

Notes

  1. Landsman 2007, p. 428.
  2. Coutinho 1997, pp. 598–599.
  3. Coutinho 1997, pp. 602–603.
  4. 1 2 Lounesto & Ablamowicz 2004, p. xvi.
  5. 1 2 Micali, Boudet & Helmstetter 1992, pp. 83–96.
  6. 1 2 Helmstetter & Micali 2008, p. xii.
  7. Coutinho 1997, pp. 600–601.
  8. Coutinho 1995, pp. 20–24.
  9. Coutinho 1995, p. 9, Proposition 2.1.
  10. Coutinho 1995, pp. 14–15.
  11. Coutinho 1995, p. 16.
  12. Dirac 1926, pp. 415–417.
  13. Coutinho 1997, p. 597.
  14. Coutinho 1995, p. 70.
  15. Berest & Wilson 2000, pp. 127–147.
  16. Cannings & Holland 1994, pp. 116–141.
  17. Lebruyn 1995, pp. 32–48.
  18. Coutinho 1995, section 4.4.

Related Research Articles

<span class="mw-page-title-main">Gradient</span> Multivariate derivative (mathematics)

In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field whose value at a point gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of . If the gradient of a function is non-zero at a point , the direction of the gradient is the direction in which the function increases most quickly from , and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to minimize a function by gradient descent. In coordinate-free terms, the gradient of a function may be defined by:

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry.

A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

In mathematics, Hilbert's Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893.

<span class="mw-page-title-main">Exterior algebra</span> Algebra of exterior/ wedge products

In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of is "outside"

In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction is an operation that consists of expressing the fraction as a sum of a polynomial and one or several fractions with a simpler denominator.

<span class="mw-page-title-main">Poisson bracket</span> Operation in Hamiltonian mechanics

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring K[x1, ..., xn] over a field K. A Gröbner basis allows many important properties of the ideal and the associated algebraic variety to be deduced easily, such as the dimension and the number of zeros when it is finite. Gröbner basis computation is one of the main practical tools for solving systems of polynomial equations and computing the images of algebraic varieties under projections or rational maps.

In algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in n indeterminates, as n goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number n of indeterminates. Among other things, this ring plays an important role in the representation theory of the symmetric group.

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

<span class="mw-page-title-main">Legendre transformation</span> Mathematical transformation

In mathematics, the Legendre transformation, first introduced by Adrien-Marie Legendre in 1787 when studying the minimal surface problem, is an involutive transformation on real-valued functions that are convex on a real variable. Specifically, if a real-valued multivariable function is convex on one of its independent real variables, then the Legendre transform with respect to this variable is applicable to the function.

In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form

In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q, p) → that preserves the form of Hamilton's equations. This is sometimes known as form invariance. Although Hamilton's equations are preserved, it need not preserve the explicit form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations and Liouville's theorem.

In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number p, then this root can be lifted to a unique root modulo any higher power of p. More generally, if a polynomial factors modulo p into two coprime polynomials, this factorization can be lifted to a factorization modulo any higher power of p.

In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.

In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root, or, equivalently, a common factor. In some older texts, the resultant is also called the eliminant.

In algebra, the greatest common divisor of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.

In mathematics, the ring of polynomial functions on a vector space V over a field k gives a coordinate-free analog of a polynomial ring. It is denoted by k[V]. If V is finite dimensional and is viewed as an algebraic variety, then k[V] is precisely the coordinate ring of V.

References