*-algebra

Last updated

In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra; read as "star-algebra") is a mathematical structure consisting of two involutive ringsR and A, where R is commutative and A has the structure of an associative algebra over R. Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution. [lower-alpha 1]

Contents

Definitions

*-ring

In mathematics, a *-ring is a ring with a map * : AA that is an antiautomorphism and an involution.

More precisely, * is required to satisfy the following properties: [1]

for all x, y in A.

This is also called an involutive ring, involutory ring, and ring with involution. The third axiom is implied by the second and fourth axioms, making it redundant.

Elements such that x* = x are called self-adjoint . [2]

Archetypical examples of a *-ring are fields of complex numbers and algebraic numbers with complex conjugation as the involution. One can define a sesquilinear form over any *-ring.

Also, one can define *-versions of algebraic objects, such as ideal and subring, with the requirement to be *-invariant: xIx* ∈ I and so on.


*-rings are unrelated to star semirings in the theory of computation.

*-algebra

A *-algebraA is a *-ring, [lower-alpha 2] with involution * that is an associative algebra over a commutative *-ring R with involution , such that (r x)* = rx* rR, xA. [3]

The base *-ring R is often the complex numbers (with acting as complex conjugation).

It follows from the axioms that * on A is conjugate-linear in R, meaning

(λ x + μy)* = λx* + μy*

for λ, μR, x, yA.

A *-homomorphismf : AB is an algebra homomorphism that is compatible with the involutions of A and B, i.e.,

Philosophy of the *-operation

The *-operation on a *-ring is analogous to complex conjugation on the complex numbers. The *-operation on a *-algebra is analogous to taking adjoints in complex matrix algebras.

Notation

The * involution is a unary operation written with a postfixed star glyph centered above or near the mean line:

xx*, or
xx (TeX: x^*),

but not as "x"; see the asterisk article for details.

Examples

Involutive Hopf algebras are important examples of *-algebras (with the additional structure of a compatible comultiplication); the most familiar example being:

Non-Example

Not every algebra admits an involution:

Regard the 2×2 matrices over the complex numbers. Consider the following subalgebra:

Any nontrivial antiautomorphism necessarily has the form: [4]

for any complex number .

It follows that any nontrivial antiautomorphism fails to be idempotent:

Concluding that the subalgebra admits no involution.

Additional structures

Many properties of the transpose hold for general *-algebras:

Skew structures

Given a *-ring, there is also the map −* : x ↦ −x*. It does not define a *-ring structure (unless the characteristic is 2, in which case −* is identical to the original *), as 1 ↦ −1, neither is it antimultiplicative, but it satisfies the other axioms (linear, involution) and hence is quite similar to *-algebra where xx*.

Elements fixed by this map (i.e., such that a = −a*) are called skew Hermitian.

For the complex numbers with complex conjugation, the real numbers are the Hermitian elements, and the imaginary numbers are the skew Hermitian.

See also

Notes

  1. In this context, involution is taken to mean an involutory antiautomorphism, also known as an anti-involution.
  2. Most definitions do not require a *-algebra to have the unity, i.e. a *-algebra is allowed to be a *-rng only.

Related Research Articles

In mathematics, specifically in functional analysis, a C-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.

<span class="mw-page-title-main">Transpose</span> Matrix operation which flips a matrix over its diagonal

In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by AT.

<span class="mw-page-title-main">Complex conjugate</span> Fundamental operation on complex numbers

In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if and are real numbers then the complex conjugate of is The complex conjugate of is often denoted as or .

<span class="mw-page-title-main">Unitary group</span> Group of unitary matrices

In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group.

<span class="mw-page-title-main">Special unitary group</span> Group of unitary matrices with determinant of 1

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

In mathematics, the Cayley–Dickson construction, named after Arthur Cayley and Leonard Eugene Dickson, produces a sequence of algebras over the field of real numbers, each with twice the dimension of the previous one. The algebras produced by this process are known as Cayley–Dickson algebras, for example complex numbers, quaternions, and octonions. These examples are useful composition algebras frequently applied in mathematical physics.

In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry. There are several notations, such as or , , or .

In mathematics, an element of a ring is called nilpotent if there exists some positive integer , called the index, such that .

<span class="mw-page-title-main">Involution (mathematics)</span> Function that is its own inverse

In mathematics, an involution, involutory function, or self-inverse function is a function f that is its own inverse,

In abstract algebra, a semiring is an algebraic structure. It is a generalization of a ring, dropping the requirement that each element must have an additive inverse. At the same time, it is a generalization of bounded distributive lattices.

In mathematics, an antihomomorphism is a type of function defined on sets with multiplication that reverses the order of multiplication. An antiautomorphism is an invertible antihomomorphism, i.e. an antiisomorphism, from a set to itself. From bijectivity it follows that antiautomorphisms have inverses, and that the inverse of an antiautomorphism is also an antiautomorphism.

In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui- meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector.

In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms:

  1. .
<span class="mw-page-title-main">Hermitian symmetric space</span> Manifold with inversion symmetry

In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.

In mathematics, an involutory matrix is a square matrix that is its own inverse. That is, multiplication by the matrix A is an involution if and only if A2 = I, where I is the n × n identity matrix. Involutory matrices are all square roots of the identity matrix. This is simply a consequence of the fact that any invertible matrix multiplied by its inverse is the identity.

In mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory.

In mathematics, symmetric cones, sometimes called domains of positivity, are open convex self-dual cones in Euclidean space which have a transitive group of symmetries, i.e. invertible operators that take the cone onto itself. By the Koecher–Vinberg theorem these correspond to the cone of squares in finite-dimensional real Euclidean Jordan algebras, originally studied and classified by Jordan, von Neumann & Wigner (1934). The tube domain associated with a symmetric cone is a noncompact Hermitian symmetric space of tube type. All the algebraic and geometric structures associated with the symmetric space can be expressed naturally in terms of the Jordan algebra. The other irreducible Hermitian symmetric spaces of noncompact type correspond to Siegel domains of the second kind. These can be described in terms of more complicated structures called Jordan triple systems, which generalize Jordan algebras without identity.

In mathematics, a mutation, also called a homotope, of a unital Jordan algebra is a new Jordan algebra defined by a given element of the Jordan algebra. The mutation has a unit if and only if the given element is invertible, in which case the mutation is called a proper mutation or an isotope. Mutations were first introduced by Max Koecher in his Jordan algebraic approach to Hermitian symmetric spaces and bounded symmetric domains of tube type. Their functorial properties allow an explicit construction of the corresponding Hermitian symmetric space of compact type as a compactification of a finite-dimensional complex semisimple Jordan algebra. The automorphism group of the compactification becomes a complex subgroup, the complexification of its maximal compact subgroup. Both groups act transitively on the compactification. The theory has been extended to cover all Hermitian symmetric spaces using the theory of Jordan pairs or Jordan triple systems. Koecher obtained the results in the more general case directly from the Jordan algebra case using the fact that only Jordan pairs associated with period two automorphisms of Jordan algebras are required.

In mathematics, a bioctonion, or complex octonion, is a pair (p,q) where p and q are biquaternions.

References

  1. Weisstein, Eric W. (2015). "C-Star Algebra". Wolfram MathWorld.
  2. 1 2 3 Baez, John (2015). "Octonions". Department of Mathematics. University of California, Riverside. Archived from the original on 26 March 2015. Retrieved 27 January 2015.
  3. star-algebra at the nLab
  4. Winker, S. K.; Wos, L.; Lusk, E. L. (1981). "Semigroups, Antiautomorphisms, and Involutions: A Computer Solution to an Open Problem, I". Mathematics of Computation. 37 (156): 533–545. doi:10.2307/2007445. ISSN   0025-5718.