Dirac spectrum

Last updated

In mathematics, a Dirac spectrum, named after Paul Dirac, is the spectrum of eigenvalues of a Dirac operator on a Riemannian manifold with a spin structure. The isospectral problem for the Dirac spectrum asks whether two Riemannian spin manifolds have identical spectra. The Dirac spectrum depends on the spin structure in the sense that there exists a Riemannian manifold with two different spin structures that have different Dirac spectra. [1]

See also

Related Research Articles

In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry.

In the mathematical field of Riemannian geometry, the scalar curvature is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.

In differential geometry, given a spin structure on an -dimensional orientable Riemannian manifold one defines the spinor bundle to be the complex vector bundle associated to the corresponding principal bundle of spin frames over and the spin representation of its structure group on the space of spinors .

In mathematics, two linear operators are called isospectral or cospectral if they have the same spectrum. Roughly speaking, they are supposed to have the same sets of eigenvalues, when those are counted with multiplicity.

In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.

Killing spinor is a term used in mathematics and physics. By the more narrow definition, commonly used in mathematics, the term Killing spinor indicates those twistor spinors which are also eigenspinors of the Dirac operator. The term is named after Wilhelm Killing.

<span class="mw-page-title-main">Hearing the shape of a drum</span>

To hear the shape of a drum is to infer information about the shape of the drumhead from the sound it makes, i.e., from the list of overtones, via the use of mathematical theory.

In mathematics and quantum mechanics, a Dirac operator is a differential operator that is a formal square root, or half-iterate, of a second-order operator such as a Laplacian. The original case which concerned Paul Dirac was to factorise formally an operator for Minkowski space, to get a form of quantum theory compatible with special relativity; to get the relevant Laplacian as a product of first-order operators he introduced spinors. It was first published in 1928.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

In differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry.

In mathematics and physics, the spectral asymmetry is the asymmetry in the distribution of the spectrum of eigenvalues of an operator. In mathematics, the spectral asymmetry arises in the study of elliptic operators on compact manifolds, and is given a deep meaning by the Atiyah-Singer index theorem. In physics, it has numerous applications, typically resulting in a fractional charge due to the asymmetry of the spectrum of a Dirac operator. For example, the vacuum expectation value of the baryon number is given by the spectral asymmetry of the Hamiltonian operator. The spectral asymmetry of the confined quark fields is an important property of the chiral bag model. For fermions, it is known as the Witten index, and can be understood as describing the Casimir effect for fermions.

In mathematics, topological modular forms (tmf) is the name of a spectrum that describes a generalized cohomology theory. In concrete terms, for any integer n there is a topological space , and these spaces are equipped with certain maps between them, so that for any topological space X, one obtains an abelian group structure on the set of homotopy classes of continuous maps from X to . One feature that distinguishes tmf is the fact that its coefficient ring, (point), is almost the same as the graded ring of holomorphic modular forms with integral cusp expansions. Indeed, these two rings become isomorphic after inverting the primes 2 and 3, but this inversion erases a lot of torsion information in the coefficient ring.

The Lichnerowicz formula is a fundamental equation in the analysis of spinors on pseudo-Riemannian manifolds. In dimension 4, it forms a piece of Seiberg–Witten theory and other aspects of gauge theory. It is named after noted mathematicians André Lichnerowicz who proved it in 1963, and Roland Weitzenböck. The formula gives a relationship between the Dirac operator and the Laplace–Beltrami operator acting on spinors, in which the scalar curvature appears in a natural way. The result is significant because it provides an interface between results from the study of elliptic partial differential equations, results concerning the scalar curvature, and results on spinors and spin structures.

Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry have also been examined. The field concerns itself with two kinds of questions: direct problems and inverse problems.

<span class="mw-page-title-main">Carolyn S. Gordon</span> American mathematician

Carolyn S. Gordon is a mathematician and Benjamin Cheney Professor of Mathematics at Dartmouth College. She is most well known for giving a negative answer to the question "Can you hear the shape of a drum?" in her work with David Webb and Scott A. Wolpert. She is a Chauvenet Prize winner and a 2010 Noether Lecturer.

In mathematics, a nearly Kähler manifold is an almost Hermitian manifold , with almost complex structure , such that the (2,1)-tensor is skew-symmetric. So,

In mathematics, spin geometry is the area of differential geometry and topology where objects like spin manifolds and Dirac operators, and the various associated index theorems have come to play a fundamental role both in mathematics and in mathematical physics.

In spectral geometry, the Rayleigh–Faber–Krahn inequality, named after its conjecturer, Lord Rayleigh, and two individuals who independently proved the conjecture, G. Faber and Edgar Krahn, is an inequality concerning the lowest Dirichlet eigenvalue of the Laplace operator on a bounded domain in , . It states that the first Dirichlet eigenvalue is no less than the corresponding Dirichlet eigenvalue of a Euclidean ball having the same volume. Furthermore, the inequality is rigid in the sense that if the first Dirichlet eigenvalue is equal to that of the corresponding ball, then the domain must actually be a ball. In the case of , the inequality essentially states that among all drums of equal area, the circular drum (uniquely) has the lowest voice.

In mathematics, a Novikov–Shubin invariant, introduced by Sergei Novikov and Mikhail Shubin (1986), is an invariant of a compact Riemannian manifold related to the spectrum of the Laplace operator acting on square-integrable differential forms on its universal cover.

<span class="mw-page-title-main">Helga Baum</span> German mathematician

Helga Baum is a German mathematician. She is professor for differential geometry and global analysis in the Institute for Mathematics of the Humboldt University of Berlin.

References

  1. Bar (2000). "Dependence of the Dirac spectrum on the spin structure" (PDF). Archived (PDF) from the original on 2012-03-19. Retrieved 2010-09-23.{{cite journal}}: Cite journal requires |journal= (help)