In mathematics, in the theory of integrable systems, a Lax pair is a pair of time-dependent matrices or operators that satisfy a corresponding differential equation, called the Lax equation. Lax pairs were introduced by Peter Lax to discuss solitons in continuous media. The inverse scattering transform makes use of the Lax equations to solve such systems.
A Lax pair is a pair of matrices or operators dependent on time and acting on a fixed Hilbert space, and satisfying Lax's equation:
where is the commutator. Often, as in the example below, depends on in a prescribed way, so this is a nonlinear equation for as a function of .
It can then be shown that the eigenvalues and more generally the spectrum of L are independent of t. The matrices/operators L are said to be isospectral as varies.
The core observation is that the matrices are all similar by virtue of
where is the solution of the Cauchy problem
where I denotes the identity matrix. Note that if P(t) is skew-adjoint, U(t,s) will be unitary.
In other words, to solve the eigenvalue problem Lψ = λψ at time t, it is possible to solve the same problem at time 0 where L is generally known better, and to propagate the solution with the following formulas:
The result can also be shown using the invariants for any . These satisfy
due to the Lax equation, and since the characteristic polynomial can be written in terms of these traces, the spectrum is preserved by the flow. [1]
The above property is the basis for the inverse scattering method. In this method, L and P act on a functional space (thus ψ = ψ(t,x)), and depend on an unknown function u(t,x) which is to be determined. It is generally assumed that u(0,x) is known, and that P does not depend on u in the scattering region where . The method then takes the following form:
If the Lax matrix additionally depends on a complex parameter (as is the case for say sine-Gordon), the equation
defines an algebraic curve in with coordinates . By the isospectral property, this curve is preserved under time translation. This is the spectral curve. Such curves appear in the theory of Hitchin systems. [2]
Any PDE which admits a Lax pair representation also admits a zero-curvature representation. [3] In fact, the zero-curvature representation is more general and for other integrable PDEs, such as the sine-Gordon equation, the Lax pair refers to matrices that satisfy the zero-curvature equation rather than the Lax equation. Furthermore, the zero-curvature representation makes the link between integrable systems and geometry manifest, culminating in Ward's programme to formulate known integrable systems as solutions to the anti-self dual Yang–Mills (ASDYM) equations.
The zero-curvature equations are described by a pair of matrix-valued functions , where the subscripts denote coordinate indices rather than derivatives. Often the dependence is through a single scalar function and its derivatives. The zero-curvature equation is then
It is so called as it corresponds to the vanishing of the curvature tensor, which in this case is . This differs from the conventional expression by some minus signs, which are ultimately unimportant.
For an eigensolution to the Lax operator , one has
If we instead enforce these, together with time independence of , instead the Lax equation arises as a consistency equation for an overdetermined system.
The Lax pair can be used to define the connection components . When a PDE admits a zero-curvature representation but not a Lax equation representation, the connection components are referred to as the Lax pair, and the connection as a Lax connection.
The Korteweg–de Vries equation
can be reformulated as the Lax equation
with
where all derivatives act on all objects to the right. This accounts for the infinite number of first integrals of the KdV equation.
The previous example used an infinite dimensional Hilbert space. Examples are also possible with finite dimensional Hilbert spaces. These include Kovalevskaya top and the generalization to include an electric Field . [4]
In the Heisenberg picture of quantum mechanics, an observable A without explicit time t dependence satisfies
with H the Hamiltonian and ħ the reduced Planck constant. Aside from a factor, observables (without explicit time dependence) in this picture can thus be seen to form Lax pairs together with the Hamiltonian. The Schrödinger picture is then interpreted as the alternative expression in terms of isospectral evolution of these observables.
Further examples of systems of equations that can be formulated as a Lax pair include:
The last is remarkable, as it implies that both the Schwarzschild metric and the Kerr metric can be understood as solitons.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1⁄2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.
The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation . Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction the practical utility is limited.
In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ, are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT. The equations themselves are called "wave equations" or "field equations", because they have the mathematical form of a wave equation or are generated from a Lagrangian density and the field-theoretic Euler–Lagrange equations.
In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic, cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.
This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.
In quantum mechanics, the Hellmann–Feynman theorem relates the derivative of the total energy with respect to a parameter, to the expectation value of the derivative of the Hamiltonian with respect to that same parameter. According to the theorem, once the spatial distribution of the electrons has been determined by solving the Schrödinger equation, all the forces in the system can be calculated using classical electrostatics.
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.
In the theory of general relativity, linearized gravity is the application of perturbation theory to the metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an effective method for modeling the effects of gravity when the gravitational field is weak. The usage of linearized gravity is integral to the study of gravitational waves and weak-field gravitational lensing.
In mathematical physics, the gamma matrices, , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cl1,3(). It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin-1/2 particles.
In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.
Paraboloidal coordinates are three-dimensional orthogonal coordinates that generalize two-dimensional parabolic coordinates. They possess elliptic paraboloids as one-coordinate surfaces. As such, they should be distinguished from parabolic cylindrical coordinates and parabolic rotational coordinates, both of which are also generalizations of two-dimensional parabolic coordinates. The coordinate surfaces of the former are parabolic cylinders, and the coordinate surfaces of the latter are circular paraboloids.
In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-½ particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927.
The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.
Newton–Cartan theory is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan and Kurt Friedrichs and later developed by Dautcourt, Dixon, Dombrowski and Horneffer, Ehlers, Havas, Künzle, Lottermoser, Trautman, and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.
In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.
In mathematical physics, a Pöschl–Teller potential, named after the physicists Herta Pöschl and Edward Teller, is a special class of potentials for which the one-dimensional Schrödinger equation can be solved in terms of special functions.
In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.
In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.
In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.