Closed graph theorem (functional analysis)

Last updated

In mathematics, particularly in functional analysis and topology, the closed graph theorem is a result connecting the continuity of certain kinds of functions to a topological property of their graph. In its most elementary form, the closed graph theorem states that a linear function between two Banach spaces is continuous if and only if the graph of that function is closed.

Contents

The closed graph theorem has extensive application throughout functional analysis, because it can control whether a partially-defined linear operator admits continuous extensions. For this reason, it has been generalized to many circumstances beyond the elementary formulation above.

Preliminaries

The closed graph theorem is a result about linear map between two vector spaces endowed with topologies making them into topological vector spaces (TVSs). We will henceforth assume that and are topological vector spaces, such as Banach spaces for example, and that Cartesian products, such as are endowed with the product topology. The graph of this function is the subset

of where denotes the function's domain. The map is said to have a closed graph (in ) if its graph is a closed subset of product space (with the usual product topology). Similarly, is said to have a sequentially closed graph if is a sequentially closed subset of

A closed linear operator is a linear map whose graph is closed (it need not be continuous or bounded). It is common in functional analysis to call such maps "closed", but this should not be confused the non-equivalent notion of a "closed map" that appears in general topology.

Partial functions

It is common in functional analysis to consider partial functions, which are functions defined on a dense subset of some space A partial function is declared with the notation which indicates that has prototype (that is, its domain is and its codomain is ) and that is a dense subset of Since the domain is denoted by it is not always necessary to assign a symbol (such as ) to a partial function's domain, in which case the notation or may be used to indicate that is a partial function with codomain whose domain is a dense subset of [1] A densely defined linear operator between vector spaces is a partial function whose domain is a dense vector subspace of a TVS such that is a linear map. A prototypical example of a partial function is the derivative operator, which is only defined on the space of once continuously differentiable functions, a dense subset of the space of continuous functions.

Every partial function is, in particular, a function and so all terminology for functions can be applied to them. For instance, the graph of a partial function is (as before) the set However, one exception to this is the definition of "closed graph". A partial function is said to have a closed graph (respectively, a sequentially closed graph) if is a closed (respectively, sequentially closed) subset of in the product topology; importantly, note that the product space is and not as it was defined above for ordinary functions. [note 1]

Closable maps and closures

A linear operator is closable in if there exists a vector subspace containing and a function (resp. multifunction) whose graph is equal to the closure of the set in Such an is called a closure of in , is denoted by and necessarily extends

If is a closable linear operator then a core or an essential domain of is a subset such that the closure in of the graph of the restriction of to is equal to the closure of the graph of in (i.e. the closure of in is equal to the closure of in ).

Characterizations of closed graphs (general topology)

Throughout, let and be topological spaces and is endowed with the product topology.

Function with a closed graph

If is a function then it is said to have a closed graph if it satisfies any of the following are equivalent conditions:

  1. (Definition): The graph of is a closed subset of
  2. For every and net in such that in if is such that the net in then [2]
    • Compare this to the definition of continuity in terms of nets, which recall is the following: for every and net in such that in in
    • Thus to show that the function has a closed graph, it may be assumed that converges in to some (and then show that ) while to show that is continuous, it may not be assumed that converges in to some and instead, it must be proven that this is true (and moreover, it must more specifically be proven that converges to in ).

and if is a Hausdorff compact space then we may add to this list:

  1. is continuous. [3]

and if both and are first-countable spaces then we may add to this list:

  1. has a sequentially closed graph in

Function with a sequentially closed graph

If is a function then the following are equivalent:

  1. has a sequentially closed graph in
  2. Definition: the graph of is a sequentially closed subset of
  3. For every and sequence in such that in if is such that the net in then [2]

Basic properties of maps with closed graphs

Suppose is a linear operator between Banach spaces.

Examples and counterexamples

Continuous but not closed maps

Closed but not continuous maps

Closed graph theorems

Between Banach spaces

Closed Graph Theorem for Banach spaces  If is an everywhere-defined linear operator between Banach spaces, then the following are equivalent:

  1. is continuous.
  2. is closed (that is, the graph of is closed in the product topology on
  3. If in then in
  4. If in then in
  5. If in and if converges in to some then
  6. If in and if converges in to some then

The operator is required to be everywhere-defined, that is, the domain of is This condition is necessary, as there exist closed linear operators that are unbounded (not continuous); a prototypical example is provided by the derivative operator on whose domain is a strict subset of

The usual proof of the closed graph theorem employs the open mapping theorem. In fact, the closed graph theorem, the open mapping theorem and the bounded inverse theorem are all equivalent. This equivalence also serves to demonstrate the importance of and being Banach; one can construct linear maps that have unbounded inverses in this setting, for example, by using either continuous functions with compact support or by using sequences with finitely many non-zero terms along with the supremum norm.

Complete metrizable codomain

The closed graph theorem can be generalized from Banach spaces to more abstract topological vector spaces in the following ways.

Theorem  A linear operator from a barrelled space to a Fréchet space is continuous if and only if its graph is closed.

Between F-spaces

There are versions that does not require to be locally convex.

Theorem  A linear map between two F-spaces is continuous if and only if its graph is closed. [7] [8]

This theorem is restated and extend it with some conditions that can be used to determine if a graph is closed:

Theorem  If is a linear map between two F-spaces, then the following are equivalent:

  1. is continuous.
  2. has a closed graph.
  3. If in and if converges in to some then [9]
  4. If in and if converges in to some then

Complete pseudometrizable codomain

Every metrizable topological space is pseudometrizable. A pseudometrizable space is metrizable if and only if it is Hausdorff.

Closed Graph Theorem [10]   Also, a closed linear map from a locally convex ultrabarrelled space into a complete pseudometrizable TVS is continuous.

Closed Graph Theorem  A closed and bounded linear map from a locally convex infrabarreled space into a complete pseudometrizable locally convex space is continuous. [10]

Codomain not complete or (pseudo) metrizable

Theorem [11]   Suppose that is a linear map whose graph is closed. If is an inductive limit of Baire TVSs and is a webbed space then is continuous.

Closed Graph Theorem [10]   A closed surjective linear map from a complete pseudometrizable TVS onto a locally convex ultrabarrelled space is continuous.

An even more general version of the closed graph theorem is

Theorem [12]   Suppose that and are two topological vector spaces (they need not be Hausdorff or locally convex) with the following property:

If is any closed subspace of and is any continuous map of onto then is an open mapping.

Under this condition, if is a linear map whose graph is closed then is continuous.

Borel graph theorem

The Borel graph theorem, proved by L. Schwartz, shows that the closed graph theorem is valid for linear maps defined on and valued in most spaces encountered in analysis. [13] Recall that a topological space is called a Polish space if it is a separable complete metrizable space and that a Souslin space is the continuous image of a Polish space. The weak dual of a separable Fréchet space and the strong dual of a separable Fréchet-Montel space are Souslin spaces. Also, the space of distributions and all Lp-spaces over open subsets of Euclidean space as well as many other spaces that occur in analysis are Souslin spaces. The Borel graph theorem states:

Borel Graph Theorem  Let be linear map between two locally convex Hausdorff spaces and If is the inductive limit of an arbitrary family of Banach spaces, if is a Souslin space, and if the graph of is a Borel set in then is continuous. [13]

An improvement upon this theorem, proved by A. Martineau, uses K-analytic spaces.

A topological space is called a if it is the countable intersection of countable unions of compact sets.

A Hausdorff topological space is called K-analytic if it is the continuous image of a space (that is, if there is a space and a continuous map of onto ).

Every compact set is K-analytic so that there are non-separable K-analytic spaces. Also, every Polish, Souslin, and reflexive Fréchet space is K-analytic as is the weak dual of a Frechet space. The generalized Borel graph theorem states:

Generalized Borel Graph Theorem [14]   Let be a linear map between two locally convex Hausdorff spaces and If is the inductive limit of an arbitrary family of Banach spaces, if is a K-analytic space, and if the graph of is closed in then is continuous.

If is closed linear operator from a Hausdorff locally convex TVS into a Hausdorff finite-dimensional TVS then is continuous. [15]

See also

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function is open if for any open set in the image is open in Likewise, a closed map is a function that maps closed sets to closed sets. A map may be open, closed, both, or neither; in particular, an open map need not be closed and vice versa.

<span class="mw-page-title-main">Closed graph theorem</span> Theorem relating continuity to graphs

In mathematics, the closed graph theorem may refer to one of several basic results characterizing continuous functions in terms of their graphs. Each gives conditions when functions with closed graphs are necessarily continuous.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field K of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in K, and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication. All sequence spaces are linear subspaces of this space. Sequence spaces are typically equipped with a norm, or at least the structure of a topological vector space.

In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki (1950).

In mathematics, linear maps form an important class of "simple" functions which preserve the algebraic structure of linear spaces and are often used as approximations to more general functions. If the spaces involved are also topological spaces, then it makes sense to ask whether all linear maps are continuous. It turns out that for maps defined on infinite-dimensional topological vector spaces, the answer is generally no: there exist discontinuous linear maps. If the domain of definition is complete, it is trickier; such maps can be proven to exist, but the proof relies on the axiom of choice and does not provide an explicit example.

In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces are sequential.

In mathematics, particularly in functional analysis, a webbed space is a topological vector space designed with the goal of allowing the results of the open mapping theorem and the closed graph theorem to hold for a wider class of linear maps whose codomains are webbed spaces. A space is called webbed if there exists a collection of sets, called a web that satisfies certain properties. Webs were first investigated by de Wilde.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

In mathematics, particularly in functional analysis and convex analysis, the Ursescu theorem is a theorem that generalizes the closed graph theorem, the open mapping theorem, and the uniform boundedness principle.

The theorem on the surjection of Fréchet spaces is an important theorem, due to Stefan Banach, that characterizes when a continuous linear operator between Fréchet spaces is surjective.

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS without any need to extend definitions from real/complex-valued functions to -valued functions.

In functional analysis, two methods of constructing normed spaces from disks were systematically employed by Alexander Grothendieck to define nuclear operators and nuclear spaces. One method is used if the disk is bounded: in this case, the auxiliary normed space is with norm

In functional analysis, a topological homomorphism or simply homomorphism is the analog of homomorphisms for the category of topological vector spaces (TVSs). This concept is of considerable importance in functional analysis and the famous open mapping theorem gives a sufficient condition for a continuous linear map between Fréchet spaces to be a topological homomorphism.

This is a glossary for the terminology in a mathematical field of functional analysis.

In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.

References

Notes

  1. In contrast, when is considered as an ordinary function (rather than as the partial function ), then "having a closed graph" would instead mean that is a closed subset of If is a closed subset of then it is also a closed subset of although the converse is not guaranteed in general.
  1. Dolecki & Mynard 2016, pp. 4–5.
  2. 1 2 3 4 5 Narici & Beckenstein 2011, pp. 459–483.
  3. Munkres 2000, p. 171.
  4. Rudin 1991, p. 50.
  5. Narici & Beckenstein 2011, p. 480.
  6. Kreyszig, Erwin (1978). Introductory Functional Analysis With Applications. USA: John Wiley & Sons. Inc. p. 294. ISBN   0-471-50731-8.
  7. Schaefer & Wolff 1999, p. 78.
  8. Trèves (2006), p. 173
  9. Rudin 1991, pp. 50–52.
  10. 1 2 3 Narici & Beckenstein 2011, pp. 474–476.
  11. Narici & Beckenstein 2011, p. 479-483.
  12. Trèves 2006, p. 169.
  13. 1 2 Trèves 2006, p. 549.
  14. Trèves 2006, pp. 557–558.
  15. Narici & Beckenstein 2011, p. 476.

Bibliography