Ultrabornological space

Last updated

In functional analysis, a topological vector space (TVS) is called ultrabornological if every bounded linear operator from into another TVS is necessarily continuous. A general version of the closed graph theorem holds for ultrabornological spaces. Ultrabornological spaces were introduced by Alexander Grothendieck (Grothendieck [1955, p. 17] "espace du type (β)"). [1]

Contents

Definitions

Let be a topological vector space (TVS).

Preliminaries

A disk is a convex and balanced set. A disk in a TVS is called bornivorous [2] if it absorbs every bounded subset of

A linear map between two TVSs is called infrabounded [2] if it maps Banach disks to bounded disks.

A disk in a TVS is called infrabornivorous if it satisfies any of the following equivalent conditions:

  1. absorbs every Banach disks in

while if locally convex then we may add to this list:

  1. the gauge of is an infrabounded map; [2]

while if locally convex and Hausdorff then we may add to this list:

  1. absorbs all compact disks; [2] that is, is "compactivorious".

Ultrabornological space

A TVS is ultrabornological if it satisfies any of the following equivalent conditions:

  1. every infrabornivorous disk in is a neighborhood of the origin; [2]

while if is a locally convex space then we may add to this list:

  1. every bounded linear operator from into a complete metrizable TVS is necessarily continuous;
  2. every infrabornivorous disk is a neighborhood of 0;
  3. be the inductive limit of the spaces as D varies over all compact disks in ;
  4. a seminorm on that is bounded on each Banach disk is necessarily continuous;
  5. for every locally convex space and every linear map if is bounded on each Banach disk then is continuous;
  6. for every Banach space and every linear map if is bounded on each Banach disk then is continuous.

while if is a Hausdorff locally convex space then we may add to this list:

  1. is an inductive limit of Banach spaces; [2]

Properties

Every locally convex ultrabornological space is barrelled, [2] quasi-ultrabarrelled space, and a bornological space but there exist bornological spaces that are not ultrabornological.

Examples and sufficient conditions

The finite product of locally convex ultrabornological spaces is ultrabornological. [2] Inductive limits of ultrabornological spaces are ultrabornological.

Every Hausdorff sequentially complete bornological space is ultrabornological. [2] Thus every complete Hausdorff bornological space is ultrabornological. In particular, every Fréchet space is ultrabornological. [2]

The strong dual space of a complete Schwartz space is ultrabornological.

Every Hausdorff bornological space that is quasi-complete is ultrabornological.[ citation needed ]

Counter-examples

There exist ultrabarrelled spaces that are not ultrabornological. There exist ultrabornological spaces that are not ultrabarrelled.

See also

Related Research Articles

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In functional analysis and operator theory, a bounded linear operator is a linear transformation between topological vector spaces (TVSs) and that maps bounded subsets of to bounded subsets of If and are normed vector spaces, then is bounded if and only if there exists some such that for all

In functional analysis and related areas of mathematics an absorbing set in a vector space is a set which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.

In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki (1950).

In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be inflated to include the set. A set that is not bounded is called unbounded.

In functional analysis and related areas of mathematics, a Montel space, named after Paul Montel, is any topological vector space (TVS) in which an analog of Montel's theorem holds. Specifically, a Montel space is a barrelled topological vector space in which every closed and bounded subset is compact.

In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces.

In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by that property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator.

In mathematics, an LF-space, also written (LF)-space, is a topological vector space (TVS) X that is a locally convex inductive limit of a countable inductive system of Fréchet spaces. This means that X is a direct limit of a direct system in the category of locally convex topological vector spaces and each is a Fréchet space. The name LF stands for Limit of Fréchet spaces.

In mathematics, especially functional analysis, a bornology on a set X is a collection of subsets of X satisfying axioms that generalize the notion of boundedness. One of the key motivations behind bornologies and bornological analysis is the fact that bornological spaces provide a convenient setting for homological algebra in functional analysis. This is becausepg 9 the category of bornological spaces is additive, complete, cocomplete, and has a tensor product adjoint to an internal hom, all necessary components for homological algebra.

In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem, is a fundamental result which states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

In mathematics, particularly in functional analysis, a webbed space is a topological vector space designed with the goal of allowing the results of the open mapping theorem and the closed graph theorem to hold for a wider class of linear maps whose codomains are webbed spaces. A space is called webbed if there exists a collection of sets, called a web that satisfies certain properties. Webs were first investigated by de Wilde.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

In functional analysis, two methods of constructing normed spaces from disks were systematically employed by Alexander Grothendieck to define nuclear operators and nuclear spaces. One method is used if the disk is bounded: in this case, the auxiliary normed space is with norm

In functional analysis and related areas of mathematics, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds.

In functional analysis and related areas of mathematics, Schwartz spaces are topological vector spaces (TVS) whose neighborhoods of the origin have a property similar to the definition of totally bounded subsets. These spaces were introduced by Alexander Grothendieck.

In functional analysis, a subset of a real or complex vector space that has an associated vector bornology is called bornivorous and a bornivore if it absorbs every element of If is a topological vector space (TVS) then a subset of is bornivorous if it is bornivorous with respect to the von-Neumann bornology of .

In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

In mathematics, especially functional analysis, a bornology on a vector space over a field where has a bornology ℬ, is called a vector bornology if makes the vector space operations into bounded maps.

In mathematics, specifically in functional analysis and Hilbert space theory, vector-valued Hahn–Banach theorems are generalizations of the Hahn–Banach theorems from linear functionals to linear operators valued in topological vector spaces (TVSs).

References