where the infimum of the empty set is defined to be positive infinity (which is not a real number so that would then not be real-valued).
The set is often assumed/picked to have properties, such as being an absorbing disk in that guarantee that will be a real-valued seminorm on In fact, every seminorm on is equal to the Minkowski functional (that is, ) of any subset of satisfying (where all three of these sets are necessarily absorbing in and the first and last are also disks).
Thus every seminorm (which is a function defined by purely algebraic properties) can be associated (non-uniquely) with an absorbing disk (which is a set with certain geometric properties) and conversely, every absorbing disk can be associated with its Minkowski functional (which will necessarily be a seminorm). These relationships between seminorms, Minkowski functionals, and absorbing disks is a major reason why Minkowski functionals are studied and used in functional analysis. In particular, through these relationships, Minkowski functionals allow one to "translate" certain geometric properties of a subset of into certain algebraic properties of a function on
The Minkowski function is always non-negative (meaning ). This property of being nonnegative stands in contrast to other classes of functions, such as sublinear functions and real linear functionals, that do allow negative values. However, might not be real-valued since for any given the value is a real number if and only if is not empty. Consequently, is usually assumed to have properties (such as being absorbing in for instance) that will guarantee that is real-valued.
Definition
Let be a subset of a real or complex vector space Define the gauge of or the Minkowski functional associated with or induced by as being the function valued in the extended real numbers, defined by
where recall that the infimum of the empty set is (that is, ). Here, is shorthand for
For any if and only if is not empty. The arithmetic operations on can be extended to operate on where for all non-zero real The products and remain undefined.
Some conditions making a gauge real-valued
In the field of convex analysis, the map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle p_K} taking on the value of is not necessarily an issue. However, in functional analysis is almost always real-valued (that is, to never take on the value of ), which happens if and only if the set is non-empty for every
In order for to be real-valued, it suffices for the origin of to belong to the algebraic interior or core of in [1] If is absorbing in where recall that this implies that then the origin belongs to the algebraic interior of in and thus is real-valued. Characterizations of when is real-valued are given below.
Motivating examples
Example 1
Consider a normed vector space with the norm and let be the unit ball in Then for every Thus the Minkowski functional is just the norm on
Example 2
Let be a vector space without topology with underlying scalar field Let be any linear functional on (not necessarily continuous). Fix Let be the set
and let be the Minkowski functional of Then
The function has the following properties:
It is subadditive:
It is absolutely homogeneous: for all scalars
It is nonnegative:
Therefore, is a seminorm on with an induced topology. This is characteristic of Minkowski functionals defined via "nice" sets. There is a one-to-one correspondence between seminorms and the Minkowski functional given by such sets. What is meant precisely by "nice" is discussed in the section below.
Notice that, in contrast to a stronger requirement for a norm, need not imply In the above example, one can take a nonzero from the kernel of Consequently, the resulting topology need not be Hausdorff.
Common conditions guaranteeing gauges are seminorms
To guarantee that it will henceforth be assumed that
In order for to be a seminorm, it suffices for to be a disk (that is, convex and balanced) and absorbing in which are the most common assumption placed on
Theorem[2]—If is an absorbingdisk in a vector space then the Minkowski functional of which is the map defined by
is a seminorm on Moreover,
More generally, if is convex and the origin belongs to the algebraic interior of then is a nonnegative sublinear functional on which implies in particular that it is subadditive and positive homogeneous. If is absorbing in then is positive homogeneous, meaning that for all real where [3] If is a nonnegative real-valued function on that is positive homogeneous, then the sets and satisfy and if in addition is absolutely homogeneous then both and are balanced.[3]
Gauges of absorbing disks
Arguably the most common requirements placed on a set to guarantee that is a seminorm are that be an absorbingdisk in Due to how common these assumptions are, the properties of a Minkowski functional when is an absorbing disk will now be investigated. Since all of the results mentioned above made few (if any) assumptions on they can be applied in this special case.
Theorem—Assume that is an absorbing subset of It is shown that:
Proof that the Gauge of an absorbing disk is a seminorm
Convexity and subadditivity
A simple geometric argument that shows convexity of implies subadditivity is as follows. Suppose for the moment that Then for all Since is convex and is also convex. Therefore, By definition of the Minkowski functional
But the left hand side is so that
Since was arbitrary, it follows that which is the desired inequality. The general case is obtained after the obvious modification.
Convexity of together with the initial assumption that the set is nonempty, implies that is absorbing.
Balancedness and absolute homogeneity
Notice that being balanced implies that
Therefore
Algebraic properties
Let be a real or complex vector space and let be an absorbing disk in
where is the topological interior and is the topological closure of in [6] Importantly, it was not assumed that was continuous nor was it assumed that had any topological properties.
Moreover, the Minkowski functional is continuous if and only if is a neighborhood of the origin in [6] If is continuous then[6]
Minimal requirements on the set
This section will investigate the most general case of the gauge of any subset of The more common special case where is assumed to be an absorbingdisk in was discussed above.
Properties
All results in this section may be applied to the case where is an absorbing disk.
Throughout, is any subset of
Summary—Suppose that is a subset of a real or complex vector space
A map is called nonnegative homogeneous[7] if for all and all nonnegative real Since is undefined, a map that takes infinity as a value is not nonnegative homogeneous.
Real-values: is the set of all points on which is real valued. So is real-valued if and only if in which case
Value at : if and only if if and only if
Null space: If then if and only if if and only if there exists a divergent sequence of positive real numbers such that for all Moreover, the zero set of is
Comparison to a constant: If then for any if and only if this can be restated as: If then
It follows that if is real then where the set on the right hand side denotes and not its subset If then these sets are equal if and only if contains
In particular, if or then but importantly, the converse is not necessarily true.
Gauge comparison: For any subset if and only if thus if and only if
The assignment is order-reversing in the sense that if then [8]
Because the set satisfies it follows that replacing with will not change the resulting Minkowski functional. The same is true of and of
If then and has the particularly nice property that if is real then if and only if or [note 1] Moreover, if is real then if and only if
Subadditive/Triangle inequality: is subadditive if and only if is convex. If is convex then so are both and and moreover, is subadditive.
Scaling the set: If is a scalar then for all Thus if is real then
Symmetric: is symmetric (meaning that for all ) if and only if is a symmetric set (meaning that), which happens if and only if
Absolute homogeneity: for all and all unit length scalars [note 2] if and only if for all unit length scalars in which case for all and all non-zero scalars If in addition is also real-valued then this holds for all scalars (that is, is absolutely homogeneous[note 3]).
for all unit length if and only if for all unit length
for all unit scalars if and only if for all unit scalars if this is the case then for all unit scalars
Absorbing: If is convex or balanced and if then is absorbing in
If a set is absorbing in and then is absorbing in
If is convex and then in which case
Restriction to a vector subspace: If is a vector subspace of and if denotes the Minkowski functional of on then where denotes the restriction of to
Proof
The proofs of these basic properties are straightforward exercises so only the proofs of the most important statements are given.
The proof that a convex subset that satisfies is necessarily absorbing in is straightforward and can be found in the article on absorbing sets.
For any real
so that taking the infimum of both sides shows that
This proves that Minkowski functionals are strictly positive homogeneous. For to be well-defined, it is necessary and sufficient that thus for all and all non-negative real if and only if is real-valued.
The hypothesis of statement (7) allows us to conclude that for all and all scalars satisfying Every scalar is of the form for some real where and is real if and only if is real. The results in the statement about absolute homogeneity follow immediately from the aforementioned conclusion, from the strict positive homogeneity of and from the positive homogeneity of when is real-valued.
Examples
If is a non-empty collection of subsets of then for all where
Thus for all
If is a non-empty collection of subsets of and satisfies
then for all
The following examples show that the containment could be proper.
Example: If and then but which shows that its possible for to be a proper subset of when
The next example shows that the containment can be proper when the example may be generalized to any real Assuming that the following example is representative of how it happens that satisfies but
Example: Let be non-zero and let so that and From it follows that That follows from observing that for every which contains Thus and However, so that as desired.
The next theorem shows that Minkowski functionals are exactly those functions that have a certain purely algebraic property that is commonly encountered.
Theorem—Let be any function. The following statements are equivalent:
Only (1) implies (3) will be proven because afterwards, the rest of the theorem follows immediately from the basic properties of Minkowski functionals described earlier; properties that will henceforth be used without comment. So assume that is a function such that for all and all real and let
For all real so by taking for instance, it follows that either or Let It remains to show that
It will now be shown that if or then so that in particular, it will follow that So suppose that or in either case for all real Now if then this implies that that for all real (since ), which implies that as desired. Similarly, if then for all real which implies that as desired. Thus, it will henceforth be assumed that a positive real number and that (importantly, however, the possibility that is or has not yet been ruled out).
Recall that just like the function satisfies for all real Since if and only if so assume without loss of generality that and it remains to show that Since which implies that (so in particular, is guaranteed). It remains to show that which recall happens if and only if So assume for the sake of contradiction that and let and be such that where note that implies that Then
This theorem can be extended to characterize certain classes of -valued maps (for example, real-valued sublinear functions) in terms of Minkowski functionals. For instance, it can be used to describe how every real homogeneous function (such as linear functionals) can be written in terms of a unique Minkowski functional having a certain property.
Characterizing Minkowski functionals on star sets
Proposition[9]—Let be any function and be any subset. The following statements are equivalent:
is (strictly) positive homogeneous, and
is the Minkowski functional of (that is, ), contains the origin, and is star-shaped at the origin.
The set is star-shaped at the origin if and only if whenever and A set that is star-shaped at the origin is sometimes called a star set.[10]
Characterizing Minkowski functionals that are seminorms
In this next theorem, which follows immediately from the statements above, is not assumed to be absorbing in and instead, it is deduced that is absorbing when is a seminorm. It is also not assumed that is balanced (which is a property that is often required to have); in its place is the weaker condition that for all scalars satisfying The common requirement that be convex is also weakened to only requiring that be convex.
Theorem—Let be a subset of a real or complex vector space Then is a seminorm on if and only if all of the following conditions hold:
It suffices (but is not necessary) for to be convex.
for all unit scalars
This condition is satisfied if is balanced or more generally if for all unit scalars
in which case and both and will be convex, balanced, and absorbing subsets of
Conversely, if is a seminorm on then the set satisfies all three of the above conditions (and thus also the conclusions) and also moreover, is necessarily convex, balanced, absorbing, and satisfies
Corollary—If is a convex, balanced, and absorbing subset of a real or complex vector space then is a seminorm on
Positive sublinear functions and Minkowski functionals
It may be shown that a real-valued subadditive function on an arbitrary topological vector space is continuous at the origin if and only if it is uniformly continuous, where if in addition is nonnegative, then is continuous if and only if is an open neighborhood in [11] If is subadditive and satisfies then is continuous if and only if its absolute value is continuous.
A nonnegative sublinear function is a nonnegative homogeneous function that satisfies the triangle inequality. It follows immediately from the results below that for such a function if then Given the Minkowski functional is a sublinear function if and only if it is real-valued and subadditive, which is happens if and only if and is convex.
Correspondence between open convex sets and positive continuous sublinear functions
Theorem[11]—Suppose that is a topological vector space (not necessarily locally convex or Hausdorff) over the real or complex numbers. Then the non-empty open convex subsets of are exactly those sets that are of the form for some and some positive continuous sublinear function on
Proof
Let be an open convex subset of If then let and otherwise let be arbitrary. Let be the Minkowski functional of where this convex open neighborhood of the origin satisfies Then is a continuous sublinear function on since is convex, absorbing, and open (however, is not necessarily a seminorm since it is not necessarily absolutely homogeneous). From the properties of Minkowski functionals, we have from which it follows that and so Since this completes the proof.
Morphological image processing– theory and technique for the analysis and processing of geometrical structuresPages displaying wikidata descriptions as a fallback
Seminorm– nonnegative-real-valued function on a real or complex vector space that satisfies the triangle inequality and is absolutely homogenousPages displaying wikidata descriptions as a fallback
↑ The map is called absolutely homogeneous if is well-defined and for all and all scalars (not just non-zero scalars).
Related Research Articles
The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of the Hahn–Banach theorem is known as the Hahn–Banach separation theorem or the hyperplane separation theorem, and has numerous uses in convex geometry.
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. A norm is a generalization of the intuitive notion of "length" in the physical world. If is a vector space over , where is a field equal to or to , then a norm on is a map , typically denoted by , satisfying the following four axioms:
Non-negativity: for every ,.
Positive definiteness: for every , if and only if is the zero vector.
Absolute homogeneity: for every and ,
Triangle inequality: for every and ,
In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.
In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.
In mathematics, particularly in functional analysis, a seminorm is a vector space norm that need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some absorbing disk and, conversely, the Minkowski functional of any such set is a seminorm.
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector. This norm can be defined as the square root of the inner product of a vector with itself.
In functional analysis and related areas of mathematics an absorbing set in a vector space is a set which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.
In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space is a set such that for all scalars satisfying
In mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced, in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set.
In linear algebra, a sublinear function, also called a quasi-seminorm or a Banach functional, on a vector space is a real-valued function with only some of the properties of a seminorm. Unlike seminorms, a sublinear function does not have to be nonnegative-valued and also does not have to be absolutely homogeneous. Seminorms are themselves abstractions of the more well known notion of norms, where a seminorm has all the defining properties of a norm except that it is not required to map non-zero vectors to non-zero values.
In functional and convex analysis, and related disciplines of mathematics, the polar set is a special convex set associated to any subset of a vector space lying in the dual space The bipolar of a subset is the polar of but lies in .
In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be inflated to include the set. A set that is not bounded is called unbounded.
In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces.
In geometry, a set in the Euclidean space is called a star domain if there exists an such that for all the line segment from to lies in This definition is immediately generalizable to any real, or complex, vector space.
In linear algebra, functional analysis and related areas of mathematics, a quasinorm is similar to a norm in that it satisfies the norm axioms, except that the triangle inequality is replaced by
In mathematics, an asymmetric norm on a vector space is a generalization of the concept of a norm.
In functional analysis, two methods of constructing normed spaces from disks were systematically employed by Alexander Grothendieck to define nuclear operators and nuclear spaces. One method is used if the disk is bounded: in this case, the auxiliary normed space is with norm
In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.
In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.
Berberian, Sterling K. (1974). Lectures in Functional Analysis and Operator Theory. Graduate Texts in Mathematics. Vol.15. New York: Springer. ISBN978-0-387-90081-0. OCLC878109401.
Hogbe-Nlend, Henri (1977). Bornologies and Functional Analysis: Introductory Course on the Theory of Duality Topology-Bornology and its use in Functional Analysis. North-Holland Mathematics Studies. Vol.26. Amsterdam New York New York: North Holland. ISBN978-0-08-087137-0. MR0500064. OCLC316549583.
Hogbe-Nlend, Henri; Moscatelli, V. B. (1981). Nuclear and Conuclear Spaces: Introductory Course on Nuclear and Conuclear Spaces in the Light of the Duality "topology-bornology". North-Holland Mathematics Studies. Vol.52. Amsterdam New York New York: North Holland. ISBN978-0-08-087163-9. OCLC316564345.
Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol.159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN978-3-642-64988-2. MR0248498. OCLC840293704.
F. Simeski, A.M.P. Boelens and M. Ihme. Modeling Adsorption in Silica Pores via Minkowski Functionals and Molecular Electrostatic Moments. Energies13 (22) 5976 (2020). https://doi.org/10.3390/en13225976
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.