Prevalent and shy sets

Last updated

In mathematics, the notions of prevalence and shyness are notions of "almost everywhere" and "measure zero" that are well-suited to the study of infinite-dimensional spaces and make use of the translation-invariant Lebesgue measure on finite-dimensional real spaces. The term "shy" was suggested by the American mathematician John Milnor.

Contents

Definitions

Prevalence and shyness

Let be a real topological vector space and let be a Borel-measurable subset of is said to be prevalent if there exists a finite-dimensional subspace of called the probe set, such that for all we have for -almost all where denotes the -dimensional Lebesgue measure on Put another way, for every Lebesgue-almost every point of the hyperplane lies in

A non-Borel subset of is said to be prevalent if it contains a prevalent Borel subset.

A Borel subset of is said to be shy if its complement is prevalent; a non-Borel subset of is said to be shy if it is contained within a shy Borel subset.

An alternative, and slightly more general, definition is to define a set to be shy if there exists a transverse measure for (other than the trivial measure).

Local prevalence and shyness

A subset of is said to be locally shy if every point has a neighbourhood whose intersection with is a shy set. is said to be locally prevalent if its complement is locally shy.

Theorems involving prevalence and shyness

In the following, "almost every" is taken to mean that the stated property holds of a prevalent subset of the space in question.

Related Research Articles

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.

In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of n-dimensional Euclidean space. For n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called n-dimensional volume, n-volume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by λ(A).

<span class="mw-page-title-main">Measure (mathematics)</span> Generalization of mass, length, area and volume

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

<span class="mw-page-title-main">Null set</span> Measurable set whose measure is zero

In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length.

In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.

In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.

In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable.

In mathematics, a complete measure (or, more precisely, a complete measure space) is a measure space in which every subset of every null set is measurable (having measure zero). More formally, a measure space (X, Σ, μ) is complete if and only if

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

In real analysis the Heine–Borel theorem, named after Eduard Heine and Émile Borel, states:

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

In calculus, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus—differentiation and integration. This relationship is commonly characterized in the framework of Riemann integration, but with absolute continuity it may be formulated in terms of Lebesgue integration. For real-valued functions on the real line, two interrelated notions appear: absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the Radon–Nikodym derivative, or density, of a measure. We have the following chains of inclusions for functions over a compact subset of the real line:

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

In mathematics, there is a folklore claim that there is no analogue of Lebesgue measure on an infinite-dimensional Banach space. The theorem this refers to states that there is no translationally invariant measure on a separable Banach space - because if any ball has nonzero non-infinite volume, a slightly smaller ball has zero volume, and countable many such smaller balls cover the space. The folklore statement, however, is entirely false. The countable product of Lebesgue measure is translationally invariant and gives the intuitive notion of volume as the infinite product of lengths, only the domain on which this product measure is defined must necessarily be non-separable, and the measure itself is not sigma finite.

In mathematics, the Vitali covering lemma is a combinatorial and geometric result commonly used in measure theory of Euclidean spaces. This lemma is an intermediate step, of independent interest, in the proof of the Vitali covering theorem. The covering theorem is credited to the Italian mathematician Giuseppe Vitali. The theorem states that it is possible to cover, up to a Lebesgue-negligible set, a given subset E of Rd by a disjoint family extracted from a Vitali covering of E.

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

<span class="mw-page-title-main">Lebesgue integration</span> Method of integration

In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the x-axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.

References