In functional analysis, a branch of mathematics, the algebraic interior or radial kernel of a subset of a vector space is a refinement of the concept of the interior.
Assume that is a subset of a vector space The algebraic interior (or radial kernel) of with respect to is the set of all points at which is a radial set. A point is called an internal point of [1] [2] and is said to be radial at if for every there exists a real number such that for every This last condition can also be written as where the set is the line segment (or closed interval) starting at and ending at this line segment is a subset of which is the ray emanating from in the direction of (that is, parallel to/a translation of ). Thus geometrically, an interior point of a subset is a point with the property that in every possible direction (vector) contains some (non-degenerate) line segment starting at and heading in that direction (i.e. a subset of the ray ). The algebraic interior of (with respect to ) is the set of all such points. That is to say, it is the subset of points contained in a given set with respect to which it is radial points of the set. [3]
If is a linear subspace of and then this definition can be generalized to the algebraic interior of with respect to is: [4] where always holds and if then where is the affine hull of (which is equal to ).
Algebraic closure
A point is said to be linearly accessible from a subset if there exists some such that the line segment is contained in [5] The algebraic closure of with respect to , denoted by consists of ( and) all points in that are linearly accessible from [5]
In the special case where the set is called the algebraic interior or core of and it is denoted by or Formally, if is a vector space then the algebraic interior of is [6]
We call Aalgebraically open in X if
If is non-empty, then these additional subsets are also useful for the statements of many theorems in convex functional analysis (such as the Ursescu theorem):
If is a Fréchet space, is convex, and is closed in then but in general it is possible to have while is not empty.
If then but and
Suppose
Both the core and the algebraic closure of a convex set are again convex. [5] If is convex, and then the line segment is contained in [5]
Let be a topological vector space, denote the interior operator, and then:
If then the set is denoted by and it is called the relative algebraic interior of [7] This name stems from the fact that if and only if and (where if and only if ).
If is a subset of a topological vector space then the relative interior of is the set That is, it is the topological interior of A in which is the smallest affine linear subspace of containing The following set is also useful:
If is a subset of a topological vector space then the quasi relative interior of is the set
In a Hausdorff finite dimensional topological vector space,
In geometry, a set of points is convex if it contains every line segment between two points in the set. Equivalently, a convex set or a convex region is a set that intersects every line in a line segment, single point, or the empty set. For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.
The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a vector subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of the Hahn–Banach theorem is known as the Hahn–Banach separation theorem or the hyperplane separation theorem, and has numerous uses in convex geometry.
In topology, the closure of a subset S of points in a topological space consists of all points in S together with all limit points of S. The closure of S may equivalently be defined as the union of S and its boundary, and also as the intersection of all closed sets containing S. Intuitively, the closure can be thought of as all the points that are either in S or "very near" S. A point which is in the closure of S is a point of closure of S. The notion of closure is in many ways dual to the notion of interior.
In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Other well-known examples of TVSs include Banach spaces, Hilbert spaces and Sobolev spaces.
In mathematics, specifically in topology, the interior of a subset S of a topological space X is the union of all subsets of S that are open in X. A point that is in the interior of S is an interior point of S.
In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.
In mathematics, more specifically in functional analysis, a positive linear functional on an ordered vector space is a linear functional on so that for all positive elements that is it holds that
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.
In linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map. This concept is generalised by adjoint functors.
In functional analysis and related areas of mathematics an absorbing set in a vector space is a set which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.
In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space is a set such that for all scalars satisfying
In functional and convex analysis, and related disciplines of mathematics, the polar set is a special convex set associated to any subset of a vector space lying in the dual space The bipolar of a subset is the polar of but lies in .
In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be inflated to include the set. A set that is not bounded is called unbounded.
In mathematics, the affine hull or affine span of a set S in Euclidean space Rn is the smallest affine set containing S, or equivalently, the intersection of all affine sets containing S. Here, an affine set may be defined as the translation of a vector subspace.
In mathematics, the relative interior of a set is a refinement of the concept of the interior, which is often more useful when dealing with low-dimensional sets placed in higher-dimensional spaces.
In topology, a branch of mathematics, the quasi-relative interior of a subset of a vector space is a refinement of the concept of the interior. Formally, if is a linear space then the quasi-relative interior of is where denotes the closure of the conic hull.
In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.
In mathematics, particularly in functional analysis and convex analysis, the Ursescu theorem is a theorem that generalizes the closed graph theorem, the open mapping theorem, and the uniform boundedness principle.
In mathematics, particularly in functional analysis and convex analysis, a convex series is a series of the form where are all elements of a topological vector space , and all are non-negative real numbers that sum to .
Algebraic closure of a subset of a vector space is the set of all points that are linearly accessible from . It is denoted by or .