In mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above or on the graph between the two points. Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. In simple terms, a convex function graph is shaped like a cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap .
A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain. [1] Well-known examples of convex functions of a single variable include a linear function (where is a real number), a quadratic function ( as a nonnegative real number) and an exponential function ( as a nonnegative real number).
Convex functions play an important role in many areas of mathematics. They are especially important in the study of optimization problems where they are distinguished by a number of convenient properties. For instance, a strictly convex function on an open set has no more than one minimum. Even in infinite-dimensional spaces, under suitable additional hypotheses, convex functions continue to satisfy such properties and as a result, they are the most well-understood functionals in the calculus of variations. In probability theory, a convex function applied to the expected value of a random variable is always bounded above by the expected value of the convex function of the random variable. This result, known as Jensen's inequality, can be used to deduce inequalities such as the arithmetic–geometric mean inequality and Hölder's inequality.
Let be a convex subset of a real vector space and let be a function.
Then is called convex if and only if any of the following equivalent conditions hold:
The second statement characterizing convex functions that are valued in the real line is also the statement used to define convex functions that are valued in the extended real number line where such a function is allowed to take as a value. The first statement is not used because it permits to take or as a value, in which case, if or respectively, then would be undefined (because the multiplications and are undefined). The sum is also undefined so a convex extended real-valued function is typically only allowed to take exactly one of and as a value.
The second statement can also be modified to get the definition of strict convexity, where the latter is obtained by replacing with the strict inequality Explicitly, the map is called strictly convex if and only if for all real and all such that :
A strictly convex function is a function that the straight line between any pair of points on the curve is above the curve except for the intersection points between the straight line and the curve. An example of a function which is convex but not strictly convex is . This function is not strictly convex because any two points sharing an x coordinate will have a straight line between them, while any two points NOT sharing an x coordinate will have a greater value of the function than the points between them.
The function is said to be concave (resp. strictly concave) if ( multiplied by −1) is convex (resp. strictly convex).
The term convex is often referred to as convex down or concave upward, and the term concave is often referred as concave down or convex upward. [3] [4] [5] If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph . As an example, Jensen's inequality refers to an inequality involving a convex or convex-(down), function. [6]
Many properties of convex functions have the same simple formulation for functions of many variables as for functions of one variable. See below the properties for the case of many variables, as some of them are not listed for functions of one variable.
Since is convex, by using one of the convex function definitions above and letting it follows that for all real From , it follows that Namely, .
The concept of strong convexity extends and parametrizes the notion of strict convexity. Intuitively, a strongly-convex function is a function that grows as fast as a quadratic function. [11] A strongly convex function is also strictly convex, but not vice versa. If a one-dimensional function is twice continuously differentiable and the domain is the real line, then we can characterize it as follows:
For example, let be strictly convex, and suppose there is a sequence of points such that . Even though , the function is not strongly convex because will become arbitrarily small.
More generally, a differentiable function is called strongly convex with parameter if the following inequality holds for all points in its domain: [12] or, more generally, where is any inner product, and is the corresponding norm. Some authors, such as [13] refer to functions satisfying this inequality as elliptic functions.
An equivalent condition is the following: [14]
It is not necessary for a function to be differentiable in order to be strongly convex. A third definition [14] for a strongly convex function, with parameter is that, for all in the domain and
Notice that this definition approaches the definition for strict convexity as and is identical to the definition of a convex function when Despite this, functions exist that are strictly convex but are not strongly convex for any (see example below).
If the function is twice continuously differentiable, then it is strongly convex with parameter if and only if for all in the domain, where is the identity and is the Hessian matrix, and the inequality means that is positive semi-definite. This is equivalent to requiring that the minimum eigenvalue of be at least for all If the domain is just the real line, then is just the second derivative so the condition becomes . If then this means the Hessian is positive semidefinite (or if the domain is the real line, it means that ), which implies the function is convex, and perhaps strictly convex, but not strongly convex.
Assuming still that the function is twice continuously differentiable, one can show that the lower bound of implies that it is strongly convex. Using Taylor's Theorem there exists such that Then by the assumption about the eigenvalues, and hence we recover the second strong convexity equation above.
A function is strongly convex with parameter m if and only if the function is convex.
A twice continuously differentiable function on a compact domain that satisfies for all is strongly convex. The proof of this statement follows from the extreme value theorem, which states that a continuous function on a compact set has a maximum and minimum.
Strongly convex functions are in general easier to work with than convex or strictly convex functions, since they are a smaller class. Like strictly convex functions, strongly convex functions have unique minima on compact sets.
If f is a strongly-convex function with parameter m, then: [15] : Prop.6.1.4
A uniformly convex function, [16] [17] with modulus , is a function that, for all in the domain and satisfies where is a function that is non-negative and vanishes only at 0. This is a generalization of the concept of strongly convex function; by taking we recover the definition of strong convexity.
It is worth noting that some authors require the modulus to be an increasing function, [17] but this condition is not required by all authors. [16]