Ursescu theorem

Last updated

In mathematics, particularly in functional analysis and convex analysis, the Ursescu theorem is a theorem that generalizes the closed graph theorem, the open mapping theorem, and the uniform boundedness principle.

Contents

Ursescu Theorem

The following notation and notions are used, where is a set-valued function and is a non-empty subset of a topological vector space :

Statement

Theorem [1]  (Ursescu)  Let be a complete semi-metrizable locally convex topological vector space and be a closed convex multifunction with non-empty domain. Assume that is a barrelled space for some/every Assume that and let (so that ). Then for every neighborhood of in belongs to the relative interior of in (that is, ). In particular, if then

Corollaries

Closed graph theorem

Closed graph theorem   Let and be Fréchet spaces and be a linear map. Then is continuous if and only if the graph of is closed in

Proof

For the non-trivial direction, assume that the graph of is closed and let It is easy to see that is closed and convex and that its image is Given belongs to so that for every open neighborhood of in is a neighborhood of in Thus is continuous at Q.E.D.

Uniform boundedness principle

Uniform boundedness principle   Let and be Fréchet spaces and be a bijective linear map. Then is continuous if and only if is continuous. Furthermore, if is continuous then is an isomorphism of Fréchet spaces.

Proof

Apply the closed graph theorem to and Q.E.D.

Open mapping theorem

Open mapping theorem   Let and be Fréchet spaces and be a continuous surjective linear map. Then T is an open map.

Proof

Clearly, is a closed and convex relation whose image is Let be a non-empty open subset of let be in and let in be such that From the Ursescu theorem it follows that is a neighborhood of Q.E.D.

Additional corollaries

The following notation and notions are used for these corollaries, where is a set-valued function, is a non-empty subset of a topological vector space :

Corollary  Let be a barreled first countable space and let be a subset of Then:

  1. If is lower ideally convex then
  2. If is ideally convex then

Simons' theorem

Simons' theorem [2]   Let and be first countable with locally convex. Suppose that is a multimap with non-empty domain that satisfies condition (Hwx) or else assume that is a Fréchet space and that is lower ideally convex. Assume that is barreled for some/every Assume that and let Then for every neighborhood of in belongs to the relative interior of in (i.e. ). In particular, if then

Robinson–Ursescu theorem

The implication (1) (2) in the following theorem is known as the Robinson–Ursescu theorem. [3]

Robinson–Ursescu theorem [3]   Let and be normed spaces and be a multimap with non-empty domain. Suppose that is a barreled space, the graph of verifies condition condition (Hwx), and that Let (resp. ) denote the closed unit ball in (resp. ) (so ). Then the following are equivalent:

  1. belongs to the algebraic interior of
  2. There exists such that for all
  3. There exist and such that for all and all
  4. There exists such that for all and all

See also

Notes

    Related Research Articles

    <span class="mw-page-title-main">Convex set</span> In geometry, set whose intersection with every line is a single line segment

    In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment . For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.

    In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

    Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

    In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

    In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

    <span class="mw-page-title-main">Closed graph theorem</span> Theorem relating continuity to graphs

    In mathematics, the closed graph theorem may refer to one of several basic results characterizing continuous functions in terms of their graphs. Each gives conditions when functions with closed graphs are necessarily continuous.

    In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

    In functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.

    In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces are sequential.

    In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem, is a fundamental result which states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

    In the field of topology, a Fréchet–Urysohn space is a topological space with the property that for every subset the closure of in is identical to the sequential closure of in Fréchet–Urysohn spaces are a special type of sequential space.

    In functional analysis, a branch of mathematics, the algebraic interior or radial kernel of a subset of a vector space is a refinement of the concept of the interior.

    In geometry, a valuation is a finitely additive function on a collection of admissible subsets of a fixed set with values in an abelian semigroup. For example, the Lebesgue measure is a valuation on finite unions of convex bodies of Euclidean space Other examples of valuations on finite unions of convex bodies are the surface area, the mean width, and the Euler characteristic.

    In mathematics, particularly in functional analysis and convex analysis, a convex series is a series of the form where are all elements of a topological vector space , and all are non-negative real numbers that sum to .

    The theorem on the surjection of Fréchet spaces is an important theorem, due to Stefan Banach, that characterizes when a continuous linear operator between Fréchet spaces is surjective.

    The strongest locally convex topological vector space (TVS) topology on the tensor product of two locally convex TVSs, making the canonical map continuous is called the projective topology or the π-topology. When is endowed with this topology then it is denoted by and called the projective tensor product of and

    In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of . A subalgebra of is called normal if it is commutative and closed under the operation: for all , we have and that .

    In functional analysis, a topological homomorphism or simply homomorphism is the analog of homomorphisms for the category of topological vector spaces (TVSs). This concept is of considerable importance in functional analysis and the famous open mapping theorem gives a sufficient condition for a continuous linear map between Fréchet spaces to be a topological homomorphism.

    In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

    In mathematics, particularly in functional analysis and topology, the closed graph theorem is a result connecting the continuity of certain kinds of functions to a topological property of their graph. In its most elementary form, the closed graph theorem states that a linear function between two Banach spaces is continuous if and only if the graph of that function is closed.

    References