B-convex space

Last updated

In functional analysis, the class of B-convex spaces is a class of Banach space. The concept of B-convexity was defined and used to characterize Banach spaces that have the strong law of large numbers by Anatole Beck in 1962; accordingly, "B-convexity" is understood as an abbreviation of Beck convexity. Beck proved the following theorem: A Banach space is B-convex if and only if every sequence of independent, symmetric, uniformly bounded and Radon random variables in that space satisfies the strong law of large numbers.

Let X be a Banach space with norm || ||. X is said to be B-convex if for some ε > 0 and some natural number n, it holds true that whenever x1, ..., xn are elements of the closed unit ball of X, there is a choice of signs α1, ..., αn  {1, +1} such that

Later authors have shown that B-convexity is equivalent to a number of other important properties in the theory of Banach spaces. Being B-convex and having Rademacher type were shown to be equivalent Banach-space properties by Gilles Pisier.

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.

Convex set In geometry, set that intersects every line into a single line segment

In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points, it contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersect every line into a single line segment . For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.

In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M or, alternatively, if every Cauchy sequence in M converges in M.

Normed vector space Vector space on which a distance is defined

In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real world. A norm is a real-valued function defined on the vector space that is commonly denoted and has the following properties:

  1. It is nonnegative, that is for every vector x, one has
  2. It is positive on nonzero vectors, that is,
  3. For every vector x, and every scalar one has
  4. The triangle inequality holds; that is, for every vectors x and y, one has

In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number . Similarly, an improper integral of a function, , is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if

In functional analysis, an F-space is a vector space V over the real or complex numbers together with a metric d : V × V → ℝ so that

  1. Scalar multiplication in V is continuous with respect to d and the standard metric on ℝ or ℂ.
  2. Addition in V is continuous with respect to d.
  3. The metric is translation-invariant; i.e., d(x + a, y + a) = d(x, y) for all x, y and a in V
  4. The metric space (V, d) is complete.

In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space (TVS) such that the canonical evaluation map from X into its bidual is an isomorphism of TVSs. Since a normable TVS is reflexive if and only if it is semi-reflexive, every normed space X is reflexive if and only if the canonical evaluation map from X into its bidual is surjective; in this case the normed space is necessarily also a Banach space. Note that in 1951, R. C. James discovered a non-reflexive Banach space that is isometrically isomorphic to its bidual.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice in and the study of these lattices provides fundamental information on algebraic numbers. The geometry of numbers was initiated by Hermann Minkowski (1910).

In functional analysis, the weak operator topology, often abbreviated WOT, is the weakest topology on the set of bounded operators on a Hilbert space , such that the functional sending an operator to the complex number is continuous for any vectors and in the Hilbert space.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In mathematics, a nuclear space is a topological vector space with many of the good properties of finite-dimensional vector spaces. The topology on them can be defined by a family of seminorms whose unit balls decrease rapidly in size. Vector spaces whose elements are "smooth" in some sense tend to be nuclear spaces; a typical example of a nuclear space is the set of smooth functions on a compact manifold.

In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products, but for general Banach spaces or locally convex topological vector spaces the theory is notoriously subtle.

In mathematics, Dvoretzky's theorem is an important structural theorem about normed vector spaces proved by Aryeh Dvoretzky in the early 1960s, answering a question of Alexander Grothendieck. In essence, it says that every sufficiently high-dimensional normed vector space will have low-dimensional subspaces that are approximately Euclidean. Equivalently, every high-dimensional bounded symmetric convex set has low-dimensional sections that are approximately ellipsoids.

In mathematics, uniformly convex spaces are common examples of reflexive Banach spaces. The concept of uniform convexity was first introduced by James A. Clarkson in 1936.

In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.

In mathematics — specifically, in functional analysis — an Asplund space or strong differentiability space is a type of well-behaved Banach space. Asplund spaces were introduced in 1968 by the mathematician Edgar Asplund, who was interested in the Fréchet differentiability properties of Lipschitz functions on Banach spaces.

In mathematics, Kostant's convexity theorem, introduced by Bertram Kostant (1973), states that the projection of every coadjoint orbit of a connected compact Lie group into the dual of a Cartan subalgebra is a convex set. It is a special case of a more general result for symmetric spaces. Kostant's theorem is a generalization of a result of Schur (1923), Horn (1954) and Thompson (1972) for hermitian matrices. They proved that the projection onto the diagonal matrices of the space of all n by n complex self-adjoint matrices with given eigenvalues Λ = is the convex polytope with vertices all permutations of the coordinates of Λ.

In mathematics, a uniformly smooth space is a normed vector space satisfying the property that for every there exists such that if with and then

In mathematics, Young's inequality for products is a mathematical inequality about the product of two numbers. The inequality is named after William Henry Young and should not be confused with Young's convolution inequality.

References