In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra.
Von Neumann algebras were originally introduced by John von Neumann, motivated by his study of single operators, group representations, ergodic theory and quantum mechanics. His double commutant theorem shows that the analytic definition is equivalent to a purely algebraic definition as an algebra of symmetries.
Two basic examples of von Neumann algebras are as follows:
Von Neumann algebras were first studied by von Neumann (1930) in 1929; he and Francis Murray developed the basic theory, under the original name of rings of operators, in a series of papers written in the 1930s and 1940s (F.J.Murray&J. von Neumann 1936 , 1937 , 1943; J.von Neumann 1938 , 1940 , 1943 , 1949), reprinted in the collected works of von Neumann (1961).
Introductory accounts of von Neumann algebras are given in the online notes of Jones (2003) and Wassermann (1991) and the books by Dixmier (1981), Schwartz (1967), Blackadar (2005) and Sakai (1971). The three volume work by Takesaki (1979) gives an encyclopedic account of the theory. The book by Connes (1994) discusses more advanced topics.
There are three common ways to define von Neumann algebras.
The first and most common way is to define them as weakly closed *-algebras of bounded operators (on a Hilbert space) containing the identity. In this definition the weak (operator) topology can be replaced by many other common topologies including the strong, ultrastrong or ultraweak operator topologies. The *-algebras of bounded operators that are closed in the norm topology are C*-algebras, so in particular any von Neumann algebra is a C*-algebra.
The second definition is that a von Neumann algebra is a subalgebra of the bounded operators closed under involution (the *-operation) and equal to its double commutant, or equivalently the commutant of some subalgebra closed under *. The von Neumann double commutant theorem ( von Neumann 1930 ) says that the first two definitions are equivalent.
The first two definitions describe a von Neumann algebra concretely as a set of operators acting on some given Hilbert space. Sakai (1971) showed that von Neumann algebras can also be defined abstractly as C*-algebras that have a predual; in other words the von Neumann algebra, considered as a Banach space, is the dual of some other Banach space called the predual. The predual of a von Neumann algebra is in fact unique up to isomorphism. Some authors use "von Neumann algebra" for the algebras together with a Hilbert space action, and "W*-algebra" for the abstract concept, so a von Neumann algebra is a W*-algebra together with a Hilbert space and a suitable faithful unital action on the Hilbert space. The concrete and abstract definitions of a von Neumann algebra are similar to the concrete and abstract definitions of a C*-algebra, which can be defined either as norm-closed *-algebras of operators on a Hilbert space, or as Banach *-algebras such that ||aa*||=||a|| ||a*||.
Some of the terminology in von Neumann algebra theory can be confusing, and the terms often have different meanings outside the subject.
By forgetting about the topology on a von Neumann algebra, we can consider it a (unital) *-algebra, or just a ring. Von Neumann algebras are semihereditary: every finitely generated submodule of a projective module is itself projective. There have been several attempts to axiomatize the underlying rings of von Neumann algebras, including Baer *-rings and AW*-algebras. The *-algebra of affiliated operators of a finite von Neumann algebra is a von Neumann regular ring. (The von Neumann algebra itself is in general not von Neumann regular.)
The relationship between commutative von Neumann algebras and measure spaces is analogous to that between commutative C*-algebras and locally compact Hausdorff spaces. Every commutative von Neumann algebra is isomorphic to L∞(X) for some measure space (X, μ) and conversely, for every σ-finite measure space X, the *-algebra L∞(X) is a von Neumann algebra.
Due to this analogy, the theory of von Neumann algebras has been called noncommutative measure theory, while the theory of C*-algebras is sometimes called noncommutative topology ( Connes 1994 ).
Operators E in a von Neumann algebra for which E = EE = E* are called projections; they are exactly the operators which give an orthogonal projection of H onto some closed subspace. A subspace of the Hilbert space H is said to belong to the von Neumann algebra M if it is the image of some projection in M. This establishes a 1:1 correspondence between projections of M and subspaces that belong to M. Informally these are the closed subspaces that can be described using elements of M, or that M "knows" about.
It can be shown that the closure of the image of any operator in M and the kernel of any operator in M belongs to M. Also, the closure of the image under an operator of M of any subspace belonging to M also belongs to M. (These results are a consequence of the polar decomposition).
The basic theory of projections was worked out by Murray & von Neumann (1936). Two subspaces belonging to M are called (Murray–von Neumann) equivalent if there is a partial isometry mapping the first isomorphically onto the other that is an element of the von Neumann algebra (informally, if M "knows" that the subspaces are isomorphic). This induces a natural equivalence relation on projections by defining E to be equivalent to F if the corresponding subspaces are equivalent, or in other words if there is a partial isometry of H that maps the image of E isometrically to the image of F and is an element of the von Neumann algebra. Another way of stating this is that E is equivalent to F if E=uu* and F=u*u for some partial isometry u in M.
The equivalence relation ~ thus defined is additive in the following sense: Suppose E1 ~ F1 and E2 ~ F2. If E1 ⊥ E2 and F1 ⊥ F2, then E1 + E2 ~ F1 + F2. Additivity would not generally hold if one were to require unitary equivalence in the definition of ~, i.e. if we say E is equivalent to F if u*Eu = F for some unitary u. The Schröder–Bernstein theorems for operator algebras gives a sufficient condition for Murray-von Neumann equivalence.
The subspaces belonging to M are partially ordered by inclusion, and this induces a partial order ≤ of projections. There is also a natural partial order on the set of equivalence classes of projections, induced by the partial order ≤ of projections. If M is a factor, ≤ is a total order on equivalence classes of projections, described in the section on traces below.
A projection (or subspace belonging to M) E is said to be a finite projection if there is no projection F<E (meaning F≤E and F≠E) that is equivalent to E. For example, all finite-dimensional projections (or subspaces) are finite (since isometries between Hilbert spaces leave the dimension fixed), but the identity operator on an infinite-dimensional Hilbert space is not finite in the von Neumann algebra of all bounded operators on it, since it is isometrically isomorphic to a proper subset of itself. However it is possible for infinite dimensional subspaces to be finite.
Orthogonal projections are noncommutative analogues of indicator functions in L∞(R). L∞(R) is the ||·||∞-closure of the subspace generated by the indicator functions. Similarly, a von Neumann algebra is generated by its projections; this is a consequence of the spectral theorem for self-adjoint operators.
The projections of a finite factor form a continuous geometry.
A von Neumann algebra N whose center consists only of multiples of the identity operator is called a factor. As von Neumann (1949) showed, every von Neumann algebra on a separable Hilbert space is isomorphic to a direct integral of factors. This decomposition is essentially unique. Thus, the problem of classifying isomorphism classes of von Neumann algebras on separable Hilbert spaces can be reduced to that of classifying isomorphism classes of factors.
Murray & von Neumann (1936) showed that every factor has one of 3 types as described below. The type classification can be extended to von Neumann algebras that are not factors, and a von Neumann algebra is of type X if it can be decomposed as a direct integral of type X factors; for example, every commutative von Neumann algebra has type I1. Every von Neumann algebra can be written uniquely as a sum of von Neumann algebras of types I, II, and III.
There are several other ways to divide factors into classes that are sometimes used:
A factor is said to be of type I if there is a minimal projection E ≠ 0, i.e. a projection E such that there is no other projection F with 0 < F < E. Any factor of type I is isomorphic to the von Neumann algebra of all bounded operators on some Hilbert space; since there is one Hilbert space for every cardinal number, isomorphism classes of factors of type I correspond exactly to the cardinal numbers. Since many authors consider von Neumann algebras only on separable Hilbert spaces, it is customary to call the bounded operators on a Hilbert space of finite dimension n a factor of type In, and the bounded operators on a separable infinite-dimensional Hilbert space, a factor of type I∞.
A factor is said to be of type II if there are no minimal projections but there are non-zero finite projections. This implies that every projection E can be "halved" in the sense that there are two projections F and G that are Murray–von Neumann equivalent and satisfy E = F + G. If the identity operator in a type II factor is finite, the factor is said to be of type II1; otherwise, it is said to be of type II∞. The best understood factors of type II are the hyperfinite type II1 factor and the hyperfinite type II∞ factor, found by Murray & von Neumann (1936). These are the unique hyperfinite factors of types II1 and II∞; there are an uncountable number of other factors of these types that are the subject of intensive study. Murray & von Neumann (1937) proved the fundamental result that a factor of type II1 has a unique finite tracial state, and the set of traces of projections is [0,1].
A factor of type II∞ has a semifinite trace, unique up to rescaling, and the set of traces of projections is [0,∞]. The set of real numbers λ such that there is an automorphism rescaling the trace by a factor of λ is called the fundamental group of the type II∞ factor.
The tensor product of a factor of type II1 and an infinite type I factor has type II∞, and conversely any factor of type II∞ can be constructed like this. The fundamental group of a type II1 factor is defined to be the fundamental group of its tensor product with the infinite (separable) factor of type I. For many years it was an open problem to find a type II factor whose fundamental group was not the group of positive reals, but Connes then showed that the von Neumann group algebra of a countable discrete group with Kazhdan's property (T) (the trivial representation is isolated in the dual space), such as SL(3,Z), has a countable fundamental group. Subsequently, Sorin Popa showed that the fundamental group can be trivial for certain groups, including the semidirect product of Z2 by SL(2,Z).
An example of a type II1 factor is the von Neumann group algebra of a countable infinite discrete group such that every non-trivial conjugacy class is infinite. McDuff (1969) found an uncountable family of such groups with non-isomorphic von Neumann group algebras, thus showing the existence of uncountably many different separable type II1 factors.
Lastly, type III factors are factors that do not contain any nonzero finite projections at all. In their first paper Murray & von Neumann (1936) were unable to decide whether or not they existed; the first examples were later found by von Neumann (1940). Since the identity operator is always infinite in those factors, they were sometimes called type III∞ in the past, but recently that notation has been superseded by the notation IIIλ, where λ is a real number in the interval [0,1]. More precisely, if the Connes spectrum (of its modular group) is 1 then the factor is of type III0, if the Connes spectrum is all integral powers of λ for 0 < λ < 1, then the type is IIIλ, and if the Connes spectrum is all positive reals then the type is III1. (The Connes spectrum is a closed subgroup of the positive reals, so these are the only possibilities.) The only trace on type III factors takes value ∞ on all non-zero positive elements, and any two non-zero projections are equivalent. At one time type III factors were considered to be intractable objects, but Tomita–Takesaki theory has led to a good structure theory. In particular, any type III factor can be written in a canonical way as the crossed product of a type II∞ factor and the real numbers.
Any von Neumann algebra M has a predualM∗, which is the Banach space of all ultraweakly continuous linear functionals on M. As the name suggests, M is (as a Banach space) the dual of its predual. The predual is unique in the sense that any other Banach space whose dual is M is canonically isomorphic to M∗. Sakai (1971) showed that the existence of a predual characterizes von Neumann algebras among C* algebras.
The definition of the predual given above seems to depend on the choice of Hilbert space that M acts on, as this determines the ultraweak topology. However the predual can also be defined without using the Hilbert space that M acts on, by defining it to be the space generated by all positive normal linear functionals on M. (Here "normal" means that it preserves suprema when applied to increasing nets of self adjoint operators; or equivalently to increasing sequences of projections.)
The predual M∗ is a closed subspace of the dual M* (which consists of all norm-continuous linear functionals on M) but is generally smaller. The proof that M∗ is (usually) not the same as M* is nonconstructive and uses the axiom of choice in an essential way; it is very hard to exhibit explicit elements of M* that are not in M∗. For example, exotic positive linear forms on the von Neumann algebra l∞(Z) are given by free ultrafilters; they correspond to exotic *-homomorphisms into C and describe the Stone–Čech compactification of Z.
Examples:
Weights and their special cases states and traces are discussed in detail in ( Takesaki 1979 ).
Any factor has a trace such that the trace of a non-zero projection is non-zero and the trace of a projection is infinite if and only if the projection is infinite. Such a trace is unique up to rescaling. For factors that are separable or finite, two projections are equivalent if and only if they have the same trace. The type of a factor can be read off from the possible values of this trace over the projections of the factor, as follows:
If a von Neumann algebra acts on a Hilbert space containing a norm 1 vector v, then the functional a → (av,v) is a normal state. This construction can be reversed to give an action on a Hilbert space from a normal state: this is the GNS construction for normal states.
Given an abstract separable factor, one can ask for a classification of its modules, meaning the separable Hilbert spaces that it acts on. The answer is given as follows: every such module H can be given an M-dimension dimM(H) (not its dimension as a complex vector space) such that modules are isomorphic if and only if they have the same M-dimension. The M-dimension is additive, and a module is isomorphic to a subspace of another module if and only if it has smaller or equal M-dimension.
A module is called standard if it has a cyclic separating vector. Each factor has a standard representation, which is unique up to isomorphism. The standard representation has an antilinear involution J such that JMJ = M′. For finite factors the standard module is given by the GNS construction applied to the unique normal tracial state and the M-dimension is normalized so that the standard module has M-dimension 1, while for infinite factors the standard module is the module with M-dimension equal to ∞.
The possible M-dimensions of modules are given as follows:
Connes (1976) and others proved that the following conditions on a von Neumann algebra M on a separable Hilbert space H are all equivalent:
There is no generally accepted term for the class of algebras above; Connes has suggested that amenable should be the standard term.
The amenable factors have been classified: there is a unique one of each of the types In, I∞, II1, II∞, IIIλ, for 0 < λ ≤ 1, and the ones of type III0 correspond to certain ergodic flows. (For type III0 calling this a classification is a little misleading, as it is known that there is no easy way to classify the corresponding ergodic flows.) The ones of type I and II1 were classified by Murray & von Neumann (1943), and the remaining ones were classified by Connes (1976), except for the type III1 case which was completed by Haagerup.
All amenable factors can be constructed using the group-measure space construction of Murray and von Neumann for a single ergodic transformation. In fact they are precisely the factors arising as crossed products by free ergodic actions of Z or Z/nZ on abelian von Neumann algebras L∞(X). Type I factors occur when the measure space X is atomic and the action transitive. When X is diffuse or non-atomic, it is equivalent to [0,1] as a measure space. Type II factors occur when X admits an equivalent finite (II1) or infinite (II∞) measure, invariant under an action of Z. Type III factors occur in the remaining cases where there is no invariant measure, but only an invariant measure class: these factors are called Krieger factors.
The Hilbert space tensor product of two Hilbert spaces is the completion of their algebraic tensor product. One can define a tensor product of von Neumann algebras (a completion of the algebraic tensor product of the algebras considered as rings), which is again a von Neumann algebra, and act on the tensor product of the corresponding Hilbert spaces. The tensor product of two finite algebras is finite, and the tensor product of an infinite algebra and a non-zero algebra is infinite. The type of the tensor product of two von Neumann algebras (I, II, or III) is the maximum of their types. The commutation theorem for tensor products states that
where M′ denotes the commutant of M.
The tensor product of an infinite number of von Neumann algebras, if done naively, is usually a ridiculously large non-separable algebra. Instead von Neumann (1938) showed that one should choose a state on each of the von Neumann algebras, use this to define a state on the algebraic tensor product, which can be used to produce a Hilbert space and a (reasonably small) von Neumann algebra. Araki & Woods (1968) studied the case where all the factors are finite matrix algebras; these factors are called Araki–Woods factors or ITPFI factors (ITPFI stands for "infinite tensor product of finite type I factors"). The type of the infinite tensor product can vary dramatically as the states are changed; for example, the infinite tensor product of an infinite number of type I2 factors can have any type depending on the choice of states. In particular Powers (1967) found an uncountable family of non-isomorphic hyperfinite type IIIλ factors for 0 < λ < 1, called Powers factors, by taking an infinite tensor product of type I2 factors, each with the state given by:
All hyperfinite von Neumann algebras not of type III0 are isomorphic to Araki–Woods factors, but there are uncountably many of type III0 that are not.
A bimodule (or correspondence) is a Hilbert space H with module actions of two commuting von Neumann algebras. Bimodules have a much richer structure than that of modules. Any bimodule over two factors always gives a subfactor since one of the factors is always contained in the commutant of the other. There is also a subtle relative tensor product operation due to Connes on bimodules. The theory of subfactors, initiated by Vaughan Jones, reconciles these two seemingly different points of view.
Bimodules are also important for the von Neumann group algebra M of a discrete group Γ. Indeed, if V is any unitary representation of Γ, then, regarding Γ as the diagonal subgroup of Γ × Γ, the corresponding induced representation on l2 (Γ, V) is naturally a bimodule for two commuting copies of M. Important representation theoretic properties of Γ can be formulated entirely in terms of bimodules and therefore make sense for the von Neumann algebra itself. For example, Connes and Jones gave a definition of an analogue of Kazhdan's property (T) for von Neumann algebras in this way.
Von Neumann algebras of type I are always amenable, but for the other types there are an uncountable number of different non-amenable factors, which seem very hard to classify, or even distinguish from each other. Nevertheless, Voiculescu has shown that the class of non-amenable factors coming from the group-measure space construction is disjoint from the class coming from group von Neumann algebras of free groups. Later Narutaka Ozawa proved that group von Neumann algebras of hyperbolic groups yield prime type II1 factors, i.e. ones that cannot be factored as tensor products of type II1 factors, a result first proved by Leeming Ge for free group factors using Voiculescu's free entropy. Popa's work on fundamental groups of non-amenable factors represents another significant advance. The theory of factors "beyond the hyperfinite" is rapidly expanding at present, with many new and surprising results; it has close links with rigidity phenomena in geometric group theory and ergodic theory.
Von Neumann algebras have found applications in diverse areas of mathematics like knot theory, statistical mechanics, quantum field theory, local quantum physics, free probability, noncommutative geometry, representation theory, differential geometry, and dynamical systems.
For instance, C*-algebra provides an alternative axiomatization to probability theory. In this case the method goes by the name of Gelfand–Naimark–Segal construction. This is analogous to the two approaches to measure and integration, where one has the choice to construct measures of sets first and define integrals later, or construct integrals first and define set measures as integrals of characteristic functions.
In mathematics, specifically in functional analysis, a C∗-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:
In abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication. The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. A subring of a matrix ring is again a matrix ring. Over a rng, one can form matrix rngs.
In mathematics, the spectrum of a C*-algebra or dual of a C*-algebraA, denoted Â, is the set of unitary equivalence classes of irreducible *-representations of A. A *-representation π of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators π(x) with x ∈ A. We implicitly assume that irreducible representation means non-null irreducible representation, thus excluding trivial (i.e. identically 0) representations on one-dimensional spaces. As explained below, the spectrum  is also naturally a topological space; this is similar to the notion of the spectrum of a ring.
In mathematics, there are up to isomorphism exactly two separably acting hyperfinite type II factors; one infinite and one finite. Murray and von Neumann proved that up to isomorphism there is a unique von Neumann algebra that is a factor of type II1 and also hyperfinite; it is called the hyperfinite type II1 factor. There are an uncountable number of other factors of type II1. Connes proved that the infinite one is also unique.
In mathematics and functional analysis, a direct integral or Hilbert integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series On Rings of Operators. One of von Neumann's goals in this paper was to reduce the classification of von Neumann algebras on separable Hilbert spaces to the classification of so-called factors. Factors are analogous to full matrix algebras over a field, and von Neumann wanted to prove a continuous analogue of the Artin–Wedderburn theorem classifying semi-simple rings.
In mathematics, and in particular functional analysis, the tensor product of Hilbert spaces is a way to extend the tensor product construction so that the result of taking a tensor product of two Hilbert spaces is another Hilbert space. Roughly speaking, the tensor product is the metric space completion of the ordinary tensor product. This is an example of a topological tensor product. The tensor product allows Hilbert spaces to be collected into a symmetric monoidal category.
In mathematics, and more specifically in the theory of von Neumann algebras, a crossed product is a basic method of constructing a new von Neumann algebra from a von Neumann algebra acted on by a group. It is related to the semidirect product construction for groups.
In the theory of von Neumann algebras, a subfactor of a factor is a subalgebra that is a factor and contains . The theory of subfactors led to the discovery of the Jones polynomial in knot theory.
In mathematics, affiliated operators were introduced by Murray and von Neumann in the theory of von Neumann algebras as a technique for using unbounded operators to study modules generated by a single vector. Later Atiyah and Singer showed that index theorems for elliptic operators on closed manifolds with infinite fundamental group could naturally be phrased in terms of unbounded operators affiliated with the von Neumann algebra of the group. Algebraic properties of affiliated operators have proved important in L2 cohomology, an area between analysis and geometry that evolved from the study of such index theorems.
In mathematics, KK-theory is a common generalization both of K-homology and K-theory as an additive bivariant functor on separable C*-algebras. This notion was introduced by the Russian mathematician Gennadi Kasparov in 1980.
In mathematics, operator K-theory is a noncommutative analogue of topological K-theory for Banach algebras with most applications used for C*-algebras.
In mathematics, an approximately finite-dimensional (AF) C*-algebra is a C*-algebra that is the inductive limit of a sequence of finite-dimensional C*-algebras. Approximate finite-dimensionality was first defined and described combinatorially by Ola Bratteli. Later, George A. Elliott gave a complete classification of AF algebras using the K0 functor whose range consists of ordered abelian groups with sufficiently nice order structure.
In mathematics, a commutation theorem for traces explicitly identifies the commutant of a specific von Neumann algebra acting on a Hilbert space in the presence of a trace.
In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.
Connes' embedding problem, formulated by Alain Connes in the 1970s, is a major problem in von Neumann algebra theory. During that time, the problem was reformulated in several different areas of mathematics. Dan Voiculescu developing his free entropy theory found that Connes' embedding problem is related to the existence of microstates. Some results of von Neumann algebra theory can be obtained assuming positive solution to the problem. The problem is connected to some basic questions in quantum theory, which led to the realization that it also has important implications in computer science.
In the mathematical field of functional analysis, a nuclear C*-algebra is a C*-algebra A such that for every C*-algebra B the injective and projective C*-cross norms coincides on the algebraic tensor product A⊗B and the completion of A⊗B with respect to this norm is a C*-algebra. This property was first studied by Takesaki (1964) under the name "Property T", which is not related to Kazhdan's property T.
In mathematics, Jordan operator algebras are real or complex Jordan algebras with the compatible structure of a Banach space. When the coefficients are real numbers, the algebras are called Jordan Banach algebras. The theory has been extensively developed only for the subclass of JB algebras. The axioms for these algebras were devised by Alfsen, Shultz & Størmer (1978). Those that can be realised concretely as subalgebras of self-adjoint operators on a real or complex Hilbert space with the operator Jordan product and the operator norm are called JC algebras. The axioms for complex Jordan operator algebras, first suggested by Irving Kaplansky in 1976, require an involution and are called JB* algebras or Jordan C* algebras. By analogy with the abstract characterisation of von Neumann algebras as C* algebras for which the underlying Banach space is the dual of another, there is a corresponding definition of JBW algebras. Those that can be realised using ultraweakly closed Jordan algebras of self-adjoint operators with the operator Jordan product are called JW algebras. The JBW algebras with trivial center, so-called JBW factors, are classified in terms of von Neumann factors: apart from the exceptional 27 dimensional Albert algebra and the spin factors, all other JBW factors are isomorphic either to the self-adjoint part of a von Neumann factor or to its fixed point algebra under a period two *-anti-automorphism. Jordan operator algebras have been applied in quantum mechanics and in complex geometry, where Koecher's description of bounded symmetric domains using Jordan algebras has been extended to infinite dimensions.
In mathematics, a singular trace is a trace on a space of linear operators of a separable Hilbert space that vanishes on operators of finite rank. Singular traces are a feature of infinite-dimensional Hilbert spaces such as the space of square-summable sequences and spaces of square-integrable functions. Linear operators on a finite-dimensional Hilbert space have only the zero functional as a singular trace since all operators have finite rank. For example, matrix algebras have no non-trivial singular traces and the matrix trace is the unique trace up to scaling.
In mathematics, the Calkin correspondence, named after mathematician John Williams Calkin, is a bijective correspondence between two-sided ideals of bounded linear operators of a separable infinite-dimensional Hilbert space and Calkin sequence spaces. The correspondence is implemented by mapping an operator to its singular value sequence.
This is a glossary for the terminology in a mathematical field of functional analysis.