In functional analysis and related areas of mathematics, a barrelled space (also written barreled space) is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki ( 1950 ).
A convex and balanced subset of a real or complex vector space is called a disk and it is said to be disked, absolutely convex , or convex balanced.
A barrel or a barrelled set in a topological vector space (TVS) is a subset that is a closed absorbing disk; that is, a barrel is a convex, balanced, closed, and absorbing subset.
Every barrel must contain the origin. If and if is any subset of then is a convex, balanced, and absorbing set of if and only if this is all true of in for every -dimensional vector subspace thus if then the requirement that a barrel be a closed subset of is the only defining property that does not depend solely on (or lower)-dimensional vector subspaces of
If is any TVS then every closed convex and balanced neighborhood of the origin is necessarily a barrel in (because every neighborhood of the origin is necessarily an absorbing subset). In fact, every locally convex topological vector space has a neighborhood basis at its origin consisting entirely of barrels. However, in general, there might exist barrels that are not neighborhoods of the origin; "barrelled spaces" are exactly those TVSs in which every barrel is necessarily a neighborhood of the origin. Every finite dimensional topological vector space is a barrelled space so examples of barrels that are not neighborhoods of the origin can only be found in infinite dimensional spaces.
The closure of any convex, balanced, and absorbing subset is a barrel. This is because the closure of any convex (respectively, any balanced, any absorbing) subset has this same property.
A family of examples: Suppose that is equal to (if considered as a complex vector space) or equal to (if considered as a real vector space). Regardless of whether is a real or complex vector space, every barrel in is necessarily a neighborhood of the origin (so is an example of a barrelled space). Let be any function and for every angle let denote the closed line segment from the origin to the point Let Then is always an absorbing subset of (a real vector space) but it is an absorbing subset of (a complex vector space) if and only if it is a neighborhood of the origin. Moreover, is a balanced subset of if and only if for every (if this is the case then and are completely determined by 's values on ) but is a balanced subset of if and only it is an open or closed ball centered at the origin (of radius ). In particular, barrels in are exactly those closed balls centered at the origin with radius in If then is a closed subset that is absorbing in but not absorbing in and that is neither convex, balanced, nor a neighborhood of the origin in By an appropriate choice of the function it is also possible to have be a balanced and absorbing subset of that is neither closed nor convex. To have be a balanced, absorbing, and closed subset of that is neither convex nor a neighborhood of the origin, define on as follows: for let (alternatively, it can be any positive function on that is continuously differentiable, which guarantees that and that is closed, and that also satisfies which prevents from being a neighborhood of the origin) and then extend to by defining which guarantees that is balanced in
Denote by the space of continuous linear maps from into
If is a Hausdorff topological vector space (TVS) with continuous dual space then the following are equivalent:
If is locally convex space then this list may be extended by appending:
If is a Hausdorff locally convex space then this list may be extended by appending:
If is metrizable topological vector space then this list may be extended by appending:
If is a locally convex metrizable topological vector space then this list may be extended by appending:
Each of the following topological vector spaces is barreled:
The importance of barrelled spaces is due mainly to the following results.
Theorem [19] — Let be a barrelled TVS and be a locally convex TVS. Let be a subset of the space of continuous linear maps from into . The following are equivalent:
The Banach-Steinhaus theorem is a corollary of the above result. [20] When the vector space consists of the complex numbers then the following generalization also holds.
Theorem [21] — If is a barrelled TVS over the complex numbers and is a subset of the continuous dual space of , then the following are equivalent:
Recall that a linear map is called closed if its graph is a closed subset of
Closed Graph Theorem [22] — Every closed linear operator from a Hausdorff barrelled TVS into a complete metrizable TVS is continuous.
In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Other well-known examples of TVSs include Banach spaces, Hilbert spaces and Sobolev spaces.
In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.
In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus sequences of functions.
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.
In functional analysis and related areas of mathematics an absorbing set in a vector space is a set which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.
In functional and convex analysis, and related disciplines of mathematics, the polar set is a special convex set associated to any subset of a vector space lying in the dual space The bipolar of a subset is the polar of but lies in .
In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be inflated to include the set. A set that is not bounded is called unbounded.
In functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.
In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces.
In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator.
In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite-dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite-dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.
In mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves.
In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.
In mathematics, the injective tensor product is a particular topological tensor product, a topological vector space (TVS) formed by equipping the tensor product of the underlying vector spaces of two TVSs with a compatible topology. It was introduced by Alexander Grothendieck and used by him to define nuclear spaces. Injective tensor products have applications outside of nuclear spaces: as described below, many constructions of TVSs, and in particular Banach spaces, as spaces of functions or sequences amount to injective tensor products of simpler spaces.
A locally convex topological vector space (TVS) is B-complete or a Ptak space if every subspace is closed in the weak-* topology on whenever is closed in for each equicontinuous subset .
In the mathematical field of functional analysis, DF-spaces, also written (DF)-spaces are locally convex topological vector space having a property that is shared by locally convex metrizable topological vector spaces. They play a considerable part in the theory of topological tensor products.
In functional analysis, a discipline within mathematics, a locally convex topological vector space (TVS) is said to be infrabarrelled if every bounded barrel is a neighborhood of the origin.
In functional analysis, a topological vector space (TVS) is said to be countably barrelled if every weakly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of barrelled spaces.
In functional analysis, a topological vector space (TVS) is said to be countably quasi-barrelled if every strongly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of quasibarrelled spaces.
In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.