Quasi-complete space

Last updated

In functional analysis, a topological vector space (TVS) is said to be quasi-complete or boundedly complete [1] if every closed and bounded subset is complete. [2] This concept is of considerable importance for non-metrizable TVSs. [2]

Contents

Properties

Examples and sufficient conditions

Every complete TVS is quasi-complete. [7] The product of any collection of quasi-complete spaces is again quasi-complete. [2] The projective limit of any collection of quasi-complete spaces is again quasi-complete. [8] Every semi-reflexive space is quasi-complete. [9]

The quotient of a quasi-complete space by a closed vector subspace may fail to be quasi-complete.

Counter-examples

There exists an LB-space that is not quasi-complete. [10]

See also

Related Research Articles

In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki (1950).

In functional analysis and related areas of mathematics, a Montel space, named after Paul Montel, is any topological vector space (TVS) in which an analog of Montel's theorem holds. Specifically, a Montel space is a barrelled topological vector space in which every closed and bounded subset is compact.

In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by that property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator.

In mathematics, an LF-space, also written (LF)-space, is a topological vector space (TVS) X that is a locally convex inductive limit of a countable inductive system of Fréchet spaces. This means that X is a direct limit of a direct system in the category of locally convex topological vector spaces and each is a Fréchet space. The name LF stands for Limit of Fréchet spaces.

In the area of mathematics known as functional analysis, a semi-reflexive space is a locally convex topological vector space (TVS) X such that the canonical evaluation map from X into its bidual is bijective. If this map is also an isomorphism of TVSs then it is called reflexive.

The Mackey–Arens theorem is an important theorem in functional analysis that characterizes those locally convex vector topologies that have some given space of linear functionals as their continuous dual space. According to Narici (2011), this profound result is central to duality theory; a theory that is "the central part of the modern theory of topological vector spaces."

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

A locally convex topological vector space (TVS) is B-complete or a Ptak space if every subspace is closed in the weak-* topology on whenever is closed in for each equicontinuous subset .

In functional analysis, a topological vector space (TVS) is called ultrabornological if every bounded linear operator from into another TVS is necessarily continuous. A general version of the closed graph theorem holds for ultrabornological spaces. Ultrabornological spaces were introduced by Alexander Grothendieck.

In functional analysis, a discipline within mathematics, a locally convex topological vector space (TVS) is said to be infrabarrelled if every bounded absorbing barrel is a neighborhood of the origin.

In functional analysis, a topological homomorphism or simply homomorphism is the analog of homomorphisms for the category of topological vector spaces (TVSs). This concept is of considerable importance in functional analysis and the famous open mapping theorem gives a sufficient condition for a continuous linear map between Fréchet spaces to be a topological homomorphism.

In mathematics, specifically in topology and functional analysis, a subspace S of a uniform space X is said to be sequentially complete or semi-complete if every Cauchy sequence in S converges to an element in S. X is called sequentially complete if it is a sequentially complete subset of itself.

In functional analysis and related areas of mathematics, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds.

In functional analysis and related areas of mathematics, Schwartz spaces are topological vector spaces (TVS) whose neighborhoods of the origin have a property similar to the definition of totally bounded subsets. These spaces were introduced by Alexander Grothendieck.

In functional analysis, a topological vector space (TVS) is said to be countably barrelled if every weakly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of barrelled spaces.

In functional analysis, a subset of a real or complex vector space that has an associated vector bornology is called bornivorous and a bornivore if it absorbs every element of If is a topological vector space (TVS) then a subset of is bornivorous if it is bornivorous with respect to the von-Neumann bornology of .

In functional analysis, a topological vector space (TVS) is said to be countably quasi-barrelled if every strongly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of quasibarrelled spaces.

In functional analysis and related areas of mathematics, an ultrabarrelled space is a topological vector spaces (TVS) for which every ultrabarrel is a neighbourhood of the origin.

F. Riesz's theorem is an important theorem in functional analysis that states that a Hausdorff topological vector space (TVS) is finite-dimensional if and only if it is locally compact. The theorem and its consequences are used ubiquitously in functional analysis, often used without being explicitly mentioned.

In functional analysis and related areas of mathematics, an almost open map between topological spaces is a map that satisfies a condition similar to, but weaker than, the condition of being an open map. As described below, for certain broad categories of topological vector spaces, all surjective linear operators are necessarily almost open.

References

    1. Wilansky 2013, p. 73.
    2. 1 2 3 4 5 Schaefer & Wolff 1999, p. 27.
    3. Schaefer & Wolff 1999, p. 201.
    4. Schaefer & Wolff 1999, p. 110.
    5. 1 2 Schaefer & Wolff 1999, p. 142.
    6. Trèves 2006, p. 520.
    7. Narici & Beckenstein 2011, pp. 156–175.
    8. Schaefer & Wolff 1999, p. 52.
    9. Schaefer & Wolff 1999, p. 144.
    10. Khaleelulla 1982, pp. 28–63.

    Bibliography