Functional (mathematics)

Last updated

The arc length functional has as its domain the vector space of rectifiable curves - a subspace of
C
(
[
0
,
1
]
,
R
3
)
{\displaystyle C([0,1],\mathbb {R} ^{3})}
- and outputs a real scalar. This is an example of a non-linear functional. Arclength.svg
The arc length functional has as its domain the vector space of rectifiable curves a subspace of and outputs a real scalar. This is an example of a non-linear functional.
The Riemann integral is a linear functional on the vector space of functions defined on [a, b] that are Riemann-integrable from a to b. Integral as region under curve.svg
The Riemann integral is a linear functional on the vector space of functions defined on [a, b] that are Riemann-integrable from a to b.

In mathematics, a functional is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author).

Contents

This article is mainly concerned with the second concept, which arose in the early 18th century as part of the calculus of variations. The first concept, which is more modern and abstract, is discussed in detail in a separate article, under the name linear form. The third concept is detailed in the computer science article on higher-order functions.

In the case where the space is a space of functions, the functional is a "function of a function", [6] and some older authors actually define the term "functional" to mean "function of a function". However, the fact that is a space of functions is not mathematically essential, so this older definition is no longer prevalent.[ citation needed ]

The term originates from the calculus of variations, where one searches for a function that minimizes (or maximizes) a given functional. A particularly important application in physics is search for a state of a system that minimizes (or maximizes) the action, or in other words the time integral of the Lagrangian.

Details

Duality

The mapping is a function, where is an argument of a function At the same time, the mapping of a function to the value of the function at a point is a functional; here, is a parameter.

Provided that is a linear function from a vector space to the underlying scalar field, the above linear maps are dual to each other, and in functional analysis both are called linear functionals.

Definite integral

Integrals such as form a special class of functionals. They map a function into a real number, provided that is real-valued. Examples include

Inner product spaces

Given an inner product space and a fixed vector the map defined by is a linear functional on The set of vectors such that is zero is a vector subspace of called the null space or kernel of the functional, or the orthogonal complement of denoted

For example, taking the inner product with a fixed function defines a (linear) functional on the Hilbert space of square integrable functions on

Locality

If a functional's value can be computed for small segments of the input curve and then summed to find the total value, the functional is called local. Otherwise it is called non-local. For example: is local while is non-local. This occurs commonly when integrals occur separately in the numerator and denominator of an equation such as in calculations of center of mass.

Functional equations

The traditional usage also applies when one talks about a functional equation, meaning an equation between functionals: an equation between functionals can be read as an 'equation to solve', with solutions being themselves functions. In such equations there may be several sets of variable unknowns, like when it is said that an additive map is one satisfying Cauchy's functional equation :

Derivative and integration

Functional derivatives are used in Lagrangian mechanics. They are derivatives of functionals; that is, they carry information on how a functional changes when the input function changes by a small amount.

Richard Feynman used functional integrals as the central idea in his sum over the histories formulation of quantum mechanics. This usage implies an integral taken over some function space.

See also

Related Research Articles

<span class="mw-page-title-main">Inner product space</span> Generalization of the dot product; used to define Hilbert spaces

In mathematics, an inner product space is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.

In mathematics, and more specifically in linear algebra, a linear map is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

<span class="mw-page-title-main">Basis (linear algebra)</span> Set of vectors used to define coordinates

In mathematics, a set B of vectors in a vector space V is called a basis if every element of V may be written in a unique way as a finite linear combination of elements of B. The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called basis vectors.

In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space. There is no general definition of an operator, but the term is often used in place of function when the domain is a set of functions or other structured objects. Also, the domain of an operator is often difficult to characterize explicitly, and may be extended so as to act on related objects.

<span class="mw-page-title-main">Vector space</span> Algebraic structure in linear algebra

In mathematics and physics, a vector space is a set whose elements, often called vectors, can be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. Real vector spaces and complex vector spaces are kinds of vector spaces based on different kinds of scalars: real numbers and complex numbers.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, modelling the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.

<span class="mw-page-title-main">Cauchy's integral formula</span> Provides integral formulas for all derivatives of a holomorphic function

In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric field on M consists of a metric tensor at each point p of M that varies smoothly with p.

<span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

In geometry, a three-dimensional space is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region, a solid figure.

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space rather than just the real line.

In mathematics, the disintegration theorem is a result in measure theory and probability theory. It rigorously defines the idea of a non-trivial "restriction" of a measure to a measure zero subset of the measure space in question. It is related to the existence of conditional probability measures. In a sense, "disintegration" is the opposite process to the construction of a product measure.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.

In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality. The integral was introduced by Gelfand for the case when the measure space is an interval with Lebesgue measure. The integral is also called the weak integral in contrast to the Bochner integral, which is the strong integral.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

In mathematics, convenient vector spaces are locally convex vector spaces satisfying a very mild completeness condition.

In physics, a sinusoidal plane wave is a special case of plane wave: a field whose value varies as a sinusoidal function of time and of the distance from some fixed plane. It is also called a monochromatic plane wave, with constant frequency.

An integral bilinear form is a bilinear functional that belongs to the continuous dual space of , the injective tensor product of the locally convex topological vector spaces (TVSs) X and Y. An integral linear operator is a continuous linear operator that arises in a canonical way from an integral bilinear form.

This is a glossary for the terminology in a mathematical field of functional analysis.

References

  1. Lang 2002 , p. 142 "Let E be a free module over a commutative ring A. We view A as a free module of rank 1 over itself. By the dual moduleE of E we shall mean the module Hom(E, A). Its elements will be called functionals. Thus a functional on E is an A-linear map f : EA."
  2. Kolmogorov & Fomin 1957 , p. 77 "A numerical function f(x) defined on a normed linear space R will be called a functional. A functional f(x) is said to be linear if fx + βy) = αf(x) + βf(y) where x, yR and α, β are arbitrary numbers."
  3. 1 2 Wilansky 2008, p. 7.
  4. Axler (2014) p. 101, §3.92
  5. Khelemskii, A.Ya. (2001) [1994], "Linear functional", Encyclopedia of Mathematics , EMS Press
  6. Kolmogorov & Fomin 1957 , pp. 62-63 "A real function on a space R is a mapping of R into the space R1 (the real line). Thus, for example, a mapping of Rn into R1 is an ordinary real-valued function of n variables. In the case where the space R itself consists of functions, the functions of the elements of R are usually called functionals."