DF-space

Last updated

In the field of functional analysis, DF-spaces, also written (DF)-spaces are locally convex topological vector space having a property that is shared by locally convex metrizable topological vector spaces. They play a considerable part in the theory of topological tensor products. [1]

Contents

DF-spaces were first defined by Alexander Grothendieck and studied in detail by him in ( Grothendieck 1954 ). Grothendieck was led to introduce these spaces by the following property of strong duals of metrizable spaces: If is a metrizable locally convex space and is a sequence of convex 0-neighborhoods in such that absorbs every strongly bounded set, then is a 0-neighborhood in (where is the continuous dual space of endowed with the strong dual topology). [2]

Definition

A locally convex topological vector space (TVS) is a DF-space, also written (DF)-space, if [1]

  1. is a countably quasi-barrelled space (i.e. every strongly bounded countable union of equicontinuous subsets of is equicontinuous), and
  2. possesses a fundamental sequence of bounded (i.e. there exists a countable sequence of bounded subsets such that every bounded subset of is contained in some [3] ).

Properties

Sufficient conditions

The strong dual space of a Fréchet space is a DF-space. [7]

However,

Examples

There exist complete DF-spaces that are not TVS-isomorphic with the strong dual of a metrizable locally convex space. [10] There exist DF-spaces having closed vector subspaces that are not DF-spaces. [11]

See also

Citations

    Bibliography

    Related Research Articles

    In functional analysis, an F-space is a vector space over the real or complex numbers together with a metric such that

    1. Scalar multiplication in is continuous with respect to and the standard metric on or
    2. Addition in is continuous with respect to
    3. The metric is translation-invariant; that is, for all
    4. The metric space is complete.

    In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

    In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki (1950).

    In functional analysis and related areas of mathematics, a Montel space, named after Paul Montel, is any topological vector space (TVS) in which an analog of Montel's theorem holds. Specifically, a Montel space is a barrelled topological vector space in which every closed and bounded subset is compact.

    In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator.

    In mathematics, an LF-space, also written (LF)-space, is a topological vector space (TVS) X that is a locally convex inductive limit of a countable inductive system of Fréchet spaces. This means that X is a direct limit of a direct system in the category of locally convex topological vector spaces and each is a Fréchet space. The name LF stands for Limit of Fréchet spaces.

    In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.

    The strongest locally convex topological vector space (TVS) topology on the tensor product of two locally convex TVSs, making the canonical map continuous is called the projective topology or the π-topology. When is endowed with this topology then it is denoted by and called the projective tensor product of and

    A locally convex topological vector space (TVS) is B-complete or a Ptak space if every subspace is closed in the weak-* topology on whenever is closed in for each equicontinuous subset .

    In functional analysis, a topological vector space (TVS) is called ultrabornological if every bounded linear operator from into another TVS is necessarily continuous. A general version of the closed graph theorem holds for ultrabornological spaces. Ultrabornological spaces were introduced by Alexander Grothendieck.

    In functional analysis, a topological vector space (TVS) is said to be quasi-complete or boundedly complete if every closed and bounded subset is complete. This concept is of considerable importance for non-metrizable TVSs.

    In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) is the continuous dual space of equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of where this topology is denoted by or The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise. To emphasize that the continuous dual space, has the strong dual topology, or may be written.

    In functional analysis and related areas of mathematics, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds.

    In functional analysis and related areas of mathematics, Schwartz spaces are topological vector spaces (TVS) whose neighborhoods of the origin have a property similar to the definition of totally bounded subsets. These spaces were introduced by Alexander Grothendieck.

    In functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals are contained in the weak-* closure of some bounded subset of the bidual.

    In functional analysis, a topological vector space (TVS) is said to be countably barrelled if every weakly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of barrelled spaces.

    In functional analysis, a topological vector space (TVS) is said to be countably quasi-barrelled if every strongly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of quasibarrelled spaces.

    In functional analysis and related areas of mathematics, an ultrabarrelled space is a topological vector spaces (TVS) for which every ultrabarrel is a neighbourhood of the origin.

    In functional analysis and related areas of mathematics, a quasi-ultrabarrelled space is a topological vector spaces (TVS) for which every bornivorous ultrabarrel is a neighbourhood of the origin.

    In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.