# Noncommutative geometry

Last updated

Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of spaces that are locally presented by noncommutative algebras of functions (possibly in some generalized sense). A noncommutative algebra is an associative algebra in which the multiplication is not commutative, that is, for which ${\displaystyle xy}$ does not always equal ${\displaystyle yx}$; or more generally an algebraic structure in which one of the principal binary operations is not commutative; one also allows additional structures, e.g. topology or norm, to be possibly carried by the noncommutative algebra of functions.

## Contents

An approach giving deep insight about noncommutative spaces is through operator algebras (i.e. algebras of bounded linear operators on a Hilbert space). [1] Perhaps one of the typical examples of a noncommutative space is the "noncommutative tori", which played a key role in the early development of this field in 1980s and lead to noncommutative versions of vector bundles, connections, curvature, etc. [2]

## Motivation

The main motivation is to extend the commutative duality between spaces and functions to the noncommutative setting. In mathematics, spaces, which are geometric in nature, can be related to numerical functions on them. In general, such functions will form a commutative ring. For instance, one may take the ring C(X) of continuous complex-valued functions on a topological space X. In many cases (e.g., if X is a compact Hausdorff space), we can recover X from C(X), and therefore it makes some sense to say that X has commutative topology.

More specifically, in topology, compact Hausdorff topological spaces can be reconstructed from the Banach algebra of functions on the space (Gelfand–Naimark). In commutative algebraic geometry, algebraic schemes are locally prime spectra of commutative unital rings (A. Grothendieck), and every quasi-separated scheme ${\displaystyle X}$ can be reconstructed up to isomorphism of schemes from the category of quasicoherent sheaves of ${\displaystyle O_{X}}$-modules (P. Gabriel–A. Rosenberg). For Grothendieck topologies, the cohomological properties of a site are invariants of the corresponding category of sheaves of sets viewed abstractly as a topos (A. Grothendieck). In all these cases, a space is reconstructed from the algebra of functions or its categorified version—some category of sheaves on that space.

Functions on a topological space can be multiplied and added pointwise hence they form a commutative algebra; in fact these operations are local in the topology of the base space, hence the functions form a sheaf of commutative rings over the base space.

The dream of noncommutative geometry is to generalize this duality to the duality between noncommutative algebras, or sheaves of noncommutative algebras, or sheaf-like noncommutative algebraic or operator-algebraic structures, and geometric entities of certain kinds, and give an interaction between the algebraic and geometric description of those via this duality.

Regarding that the commutative rings correspond to usual affine schemes, and commutative C*-algebras to usual topological spaces, the extension to noncommutative rings and algebras requires non-trivial generalization of topological spaces as "non-commutative spaces". For this reason there is some talk about non-commutative topology, though the term also has other meanings.

### Applications in mathematical physics

Some applications in particle physics are described in the entries Noncommutative standard model and Noncommutative quantum field theory. The sudden rise in interest in noncommutative geometry in physics follows after the speculations of its role in M-theory made in 1997. [3]

### Motivation from ergodic theory

Some of the theory developed by Alain Connes to handle noncommutative geometry at a technical level has roots in older attempts, in particular in ergodic theory. The proposal of George Mackey to create a virtual subgroup theory, with respect to which ergodic group actions would become homogeneous spaces of an extended kind, has by now been subsumed.

## Noncommutative C*-algebras, von Neumann algebras

The (formal) duals of non-commutative C*-algebras are often now called non-commutative spaces. This is by analogy with the Gelfand representation, which shows that commutative C*-algebras are dual to locally compact Hausdorff spaces. In general, one can associate to any C*-algebra S a topological space Ŝ; see spectrum of a C*-algebra.

For the duality between σ-finite measure spaces and commutative von Neumann algebras, noncommutative von Neumann algebras are called non-commutative measure spaces .

## Noncommutative differentiable manifolds

A smooth Riemannian manifold M is a topological space with a lot of extra structure. From its algebra of continuous functions C(M) we only recover M topologically. The algebraic invariant that recovers the Riemannian structure is a spectral triple. It is constructed from a smooth vector bundle E over M, e.g. the exterior algebra bundle. The Hilbert space L2(M, E) of square integrable sections of E carries a representation of C(M) by multiplication operators, and we consider an unbounded operator D in L2(M, E) with compact resolvent (e.g. the signature operator), such that the commutators [D, f] are bounded whenever f is smooth. A recent deep theorem [4] states that M as a Riemannian manifold can be recovered from this data.

This suggests that one might define a noncommutative Riemannian manifold as a spectral triple (A, H, D), consisting of a representation of a C*-algebra A on a Hilbert space H, together with an unbounded operator D on H, with compact resolvent, such that [D, a] is bounded for all a in some dense subalgebra of A. Research in spectral triples is very active, and many examples of noncommutative manifolds have been constructed.

## Noncommutative affine and projective schemes

In analogy to the duality between affine schemes and commutative rings, we define a category of noncommutative affine schemes as the dual of the category of associative unital rings. There are certain analogues of Zariski topology in that context so that one can glue such affine schemes to more general objects.

There are also generalizations of the Cone and of the Proj of a commutative graded ring, mimicking a theorem of Serre on Proj. Namely the category of quasicoherent sheaves of O-modules on a Proj of a commutative graded algebra is equivalent to the category of graded modules over the ring localized on Serre's subcategory of graded modules of finite length; there is also analogous theorem for coherent sheaves when the algebra is Noetherian. This theorem is extended as a definition of noncommutative projective geometry by Michael Artin and J. J. Zhang, [5] who add also some general ring-theoretic conditions (e.g. Artin–Schelter regularity).

Many properties of projective schemes extend to this context. For example, there exists an analog of the celebrated Serre duality for noncommutative projective schemes of Artin and Zhang. [6]

A. L. Rosenberg has created a rather general relative concept of noncommutative quasicompact scheme (over a base category), abstracting Grothendieck's study of morphisms of schemes and covers in terms of categories of quasicoherent sheaves and flat localization functors. [7] There is also another interesting approach via localization theory, due to Fred Van Oystaeyen, Luc Willaert and Alain Verschoren, where the main concept is that of a schematic algebra. [8] [9]

## Invariants for noncommutative spaces

Some of the motivating questions of the theory are concerned with extending known topological invariants to formal duals of noncommutative (operator) algebras and other replacements and candidates for noncommutative spaces. One of the main starting points of Alain Connes' direction in noncommutative geometry is his discovery of a new homology theory associated to noncommutative associative algebras and noncommutative operator algebras, namely the cyclic homology and its relations to the algebraic K-theory (primarily via Connes–Chern character map).

The theory of characteristic classes of smooth manifolds has been extended to spectral triples, employing the tools of operator K-theory and cyclic cohomology. Several generalizations of now-classical index theorems allow for effective extraction of numerical invariants from spectral triples. The fundamental characteristic class in cyclic cohomology, the JLO cocycle, generalizes the classical Chern character.

## Citations

1. Khalkhali & Marcolli 2008, p. 171.
2. Khalkhali & Marcolli 2008, p. 21.
3. Connes, Alain; Douglas, Michael R; Schwarz, Albert (1998-02-05). "Noncommutative geometry and Matrix theory". Journal of High Energy Physics. 1998 (2): 003. arXiv:. Bibcode:1998JHEP...02..003C. doi:10.1088/1126-6708/1998/02/003. ISSN   1029-8479. S2CID   7562354.
4. Connes, Alain (2008). "On the spectral characterization of manifolds". arXiv: [math.OA].
5. Artin, M.; Zhang, J.J. (1994). "Noncommutative Projective Schemes". Advances in Mathematics . 109 (2): 228–287. doi:. ISSN   0001-8708.
6. Yekutieli, Amnon; Zhang, James J. (1997-03-01). "Serre duality for noncommutative projective schemes". Proceedings of the American Mathematical Society. American Mathematical Society (AMS). 125 (3): 697–708. doi:. ISSN   0002-9939.
7. A. L. Rosenberg, Noncommutative schemes, Compositio Mathematica 112 (1998) 93--125, doi; Underlying spaces of noncommutative schemes, preprint MPIM2003-111, dvi, ps; MSRI lecture Noncommutative schemes and spaces (Feb 2000): video
8. Freddy van Oystaeyen, Algebraic geometry for associative algebras, ISBN   0-8247-0424-X - New York: Dekker, 2000.- 287 p. - (Monographs and textbooks in pure and applied mathematics, 232)
9. Van Oystaeyen, Fred; Willaert, Luc (1995). "Grothendieck topology, coherent sheaves and Serre's theorem for schematic algebras" (PDF). Journal of Pure and Applied Algebra. Elsevier BV. 104 (1): 109–122. doi:10.1016/0022-4049(94)00118-3. hdl:. ISSN   0022-4049.
10. Snyder, Hartland S. (1947-01-01). "Quantized Space-Time". Physical Review. American Physical Society (APS). 71 (1): 38–41. Bibcode:1947PhRv...71...38S. doi:10.1103/physrev.71.38. ISSN   0031-899X.

## Related Research Articles

Commutative algebra is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings.

In mathematics, noncommutative topology is a term used for the relationship between topological and C*-algebraic concepts. The term has its origins in the Gelfand–Naimark theorem, which implies the duality of the category of locally compact Hausdorff spaces and the category of commutative C*-algebras. Noncommutative topology is related to analytic noncommutative geometry.

In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper.

In noncommutative geometry and related branches of mathematics, cyclic homology and cyclic cohomology are certain (co)homology theories for associative algebras which generalize the de Rham (co)homology of manifolds. These notions were independently introduced by Boris Tsygan (homology) and Alain Connes (cohomology) in the 1980s. These invariants have many interesting relationships with several older branches of mathematics, including de Rham theory, Hochschild (co)homology, group cohomology, and the K-theory. Contributors to the development of the theory include Max Karoubi, Yuri L. Daletskii, Boris Feigin, Jean-Luc Brylinski, Mariusz Wodzicki, Jean-Louis Loday, Victor Nistor, Daniel Quillen, Joachim Cuntz, Ryszard Nest, Ralf Meyer, and Michael Puschnigg.

In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory.

In theoretical particle physics, the non-commutative Standard Model, is a model based on noncommutative geometry that unifies a modified form of general relativity with the Standard Model.

In mathematics, the field with one element is a suggestive name for an object that should behave similarly to a finite field with a single element, if such a field could exist. This object is denoted F1, or, in a French–English pun, Fun. The name "field with one element" and the notation F1 are only suggestive, as there is no field with one element in classical abstract algebra. Instead, F1 refers to the idea that there should be a way to replace sets and operations, the traditional building blocks for abstract algebra, with other, more flexible objects. Many theories of F1 have been proposed, but it is not clear which, if any, of them give F1 all the desired properties. While there is still no field with a single element in these theories, there is a field-like object whose characteristic is one.

In noncommutative geometry and related branches of mathematics and mathematical physics, a spectral triple is a set of data which encodes a geometric phenomenon in an analytic way. The definition typically involves a Hilbert space, an algebra of operators on it and an unbounded self-adjoint operator, endowed with supplemental structures. It was conceived by Alain Connes who was motivated by the Atiyah-Singer index theorem and sought its extension to 'noncommutative' spaces. Some authors refer to this notion as unbounded K-cycles or as unbounded Fredholm modules.

Noncommutative algebraic geometry is a branch of mathematics, and more specifically a direction in noncommutative geometry, that studies the geometric properties of formal duals of non-commutative algebraic objects such as rings as well as geometric objects derived from them.

Matilde Marcolli is an Italian mathematical physicist. She has conducted research work in areas of mathematics and theoretical physics; obtained the Heinz Maier-Leibnitz-Preis of the Deutsche Forschungsgemeinschaft, and the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. Marcolli has authored and edited numerous books in the field. She is currently a professor in the mathematics department of the University of Toronto and a member of the Perimeter Institute.

In mathematics, a Bost–Connes system is a quantum statistical dynamical system related to an algebraic number field, whose partition function is related to the Dedekind zeta function of the number field. Bost & Connes (1995) introduced Bost–Connes systems by constructing one for the rational numbers. Connes, Marcolli & Ramachandran (2005) extended the construction to imaginary quadratic fields.

Ali H. Chamseddine is a Lebanese physicist known for his contributions to particle physics, general relativity and mathematical physics. As of 2013, Chamseddine is a physics Professor at the American University of Beirut and the Institut des hautes études scientifiques.

Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras, simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory of singular algebraic varieties and cotangent complexes in deformation theory, among the other applications.

In mathematics, an ∞-topos is, roughly, an ∞-category such that its objects behave like sheaves of spaces with some choice of Grothendieck topology; in other words, it gives an intrinsic notion of sheaves without reference to an external space. The prototypical example of an ∞-topos is the ∞-category of sheaves of spaces on some topological space. But the notion is more flexible; for example, the ∞-category of étale sheaves on some scheme is not the ∞-category of sheaves on any topological space but it is still an ∞-topos.

Henri Moscovici is a Romanian-American mathematician, specializing in non-commutative geometry and global analysis.