Baire space

Last updated

In mathematics, a topological space is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. [1] According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, and analysis, in particular functional analysis. [2] [3] For more motivation and applications, see the article Baire category theorem. The current article focuses more on characterizations and basic properties of Baire spaces per se.

Contents

Bourbaki introduced the term "Baire space" [4] [5] in honor of René Baire, who investigated the Baire category theorem in the context of Euclidean space in his 1899 thesis. [6]

Definition

The definition that follows is based on the notions of meagre (or first category) set (namely, a set that is a countable union of sets whose closure has empty interior) and nonmeagre (or second category) set (namely, a set that is not meagre). See the corresponding article for details.

A topological space is called a Baire space if it satisfies any of the following equivalent conditions: [1] [7] [8]

  1. Every countable intersection of dense open sets is dense.
  2. Every countable union of closed sets with empty interior has empty interior.
  3. Every meagre set has empty interior.
  4. Every nonempty open set is nonmeagre. [note 1]
  5. Every comeagre set is dense.
  6. Whenever a countable union of closed sets has an interior point, at least one of the closed sets has an interior point.

The equivalence between these definitions is based on the associated properties of complementary subsets of (that is, of a set and of its complement ) as given in the table below.

Property of a setProperty of complement
openclosed
comeagremeagre
densehas empty interior
has dense interiornowhere dense

Baire category theorem

The Baire category theorem gives sufficient conditions for a topological space to be a Baire space.

BCT1 shows that the following are Baire spaces:

BCT2 shows that the following are Baire spaces:

One should note however that there are plenty of spaces that are Baire spaces without satisfying the conditions of the Baire category theorem, as shown in the Examples section below.

Properties

Given a sequence of continuous functions with pointwise limit If is a Baire space then the points where is not continuous is a meagre set in and the set of points where is continuous is dense in A special case of this is the uniform boundedness principle.

Examples

The following are examples of Baire spaces for which the Baire category theorem does not apply, because these spaces are not locally compact and not completely metrizable:

Algebraic varieties with the Zariski topology are Baire spaces. An example is the affine space consisting of the set of n-tuples of complex numbers, together with the topology whose closed sets are the vanishing sets of polynomials

See also

Notes

  1. As explained in the meagre set article, for an open set, being nonmeagre in the whole space is equivalent to being nonmeagre in itself.
  1. 1 2 Munkres 2000, p. 295.
  2. "Your favourite application of the Baire Category Theorem". Mathematics Stack Exchange.
  3. "Classic applications of Baire category theorem". MathOverflow.
  4. Engelking 1989, Historical notes, p. 199.
  5. Bourbaki 1989, p. 192.
  6. Baire, R. (1899). "Sur les fonctions de variables réelles". Annali di Matematica Pura ed Applicata . 3: 1–123.
  7. Haworth & McCoy 1977, p. 11.
  8. Narici & Beckenstein 2011, pp. 390–391.
  9. 1 2 Kelley 1975, Theorem 34, p. 200.
  10. Schechter 1996, Theorem 20.16, p. 537.
  11. Schechter 1996, Theorem 20.18, p. 538.
  12. Haworth & McCoy 1977, Proposition 1.14.
  13. Haworth & McCoy 1977, Proposition 1.23.
  14. Ma, Dan (3 June 2012). "A Question About The Rational Numbers". Dan Ma's Topology Blog.Theorem 3
  15. Haworth & McCoy 1977, Proposition 1.16.
  16. Haworth & McCoy 1977, Proposition 1.17.
  17. Haworth & McCoy 1977, Theorem 1.15.
  18. Narici & Beckenstein 2011, Theorem 11.6.7, p. 391.
  19. Haworth & McCoy 1977, Corollary 1.22.
  20. Haworth & McCoy 1977, Proposition 1.20.
  21. Oxtoby, J. (1961). "Cartesian products of Baire spaces" (PDF). Fundamenta Mathematicae . 49 (2): 157–166. doi:10.4064/fm-49-2-157-166.
  22. Fleissner, W.; Kunen, K. (1978). "Barely Baire spaces" (PDF). Fundamenta Mathematicae. 101 (3): 229–240. doi:10.4064/fm-101-3-229-240.
  23. Bourbaki 1989, Exercise 17, p. 254.
  24. Gierz et al. 2003, Corollary I-3.40.9, p. 114.
  25. "Intersection of two open dense sets is dense". Mathematics Stack Exchange.
  26. Narici & Beckenstein 2011, Theorem 11.8.6, p. 396.
  27. Wilansky 2013, p. 60.
  28. "The Sorgenfrey line is a Baire Space". Mathematics Stack Exchange.
  29. 1 2 "The Sorgenfrey plane and the Niemytzki plane are Baire spaces". Mathematics Stack Exchange.
  30. "Example of a Baire metric space which is not completely metrizable". Mathematics Stack Exchange.

Related Research Articles

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.

In mathematics, a subset of a topological space is called nowhere dense or rare if its closure has empty interior. In a very loose sense, it is a set whose elements are not tightly clustered anywhere. For example, the integers are nowhere dense among the reals, whereas the interval is not nowhere dense.

The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space. It is used in the proof of results in many areas of analysis and geometry, including some of the fundamental theorems of functional analysis.

In the mathematical field of general topology, a meagre set is a subset of a topological space that is small or negligible in a precise sense detailed below. A set that is not meagre is called nonmeagre, or of the second category. See below for definitions of other related terms.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

In the mathematical field of topology, a Gδ set is a subset of a topological space that is a countable intersection of open sets. The notation originated from the German nouns Gebiet'open set' and Durchschnitt'intersection'. Historically Gδ sets were also called inner limiting sets, but that terminology is not in use anymore. Gδ sets, and their dual, F𝜎 sets, are the second level of the Borel hierarchy.

In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.

In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki (1950).

In mathematics, particularly topology, a Gδ space is a topological space in which closed sets are in a way ‘separated’ from their complements using only countably many open sets. A Gδ space may thus be regarded as a space satisfying a different kind of separation axiom. In fact normal Gδ spaces are referred to as perfectly normal spaces, and satisfy the strongest of separation axioms.

<span class="mw-page-title-main">Zdeněk Frolík</span> Czech mathematician (1933–1989)

Zdeněk Frolík was a Czech mathematician. His research interests included topology and functional analysis. In particular, his work concerned covering properties of topological spaces, ultrafilters, homogeneity, measures, uniform spaces. He was one of the founders of modern descriptive theory of sets and spaces.

In mathematics, particularly in functional analysis, a webbed space is a topological vector space designed with the goal of allowing the results of the open mapping theorem and the closed graph theorem to hold for a wider class of linear maps whose codomains are webbed spaces. A space is called webbed if there exists a collection of sets, called a web that satisfies certain properties. Webs were first investigated by de Wilde.

In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

In mathematics, particularly in functional analysis and topology, the closed graph theorem is a result connecting the continuity of certain kinds of functions to a topological property of their graph. In its most elementary form, the closed graph theorem states that a linear function between two Banach spaces is continuous if and only if the graph of that function is closed.

References